Journal of Physical Chemistry B, Vol.113, No.8, 2477-2485, 2009
Determination of the Structure Form, of the Fourth Ligand of Zinc in Acutolysin A Using Combined Quantum Mechanical and Molecular Mechanical Simulation
Acutolysin A, which is isolated from the snake venom of Agkistrodon acutus, is a member of the SVMPs subfamily of the metzincin family, and it is a snake venom zinc metalloproteinase possessing only one catalytic domain. The catalytic zinc ion, in the active site, is coordinated in a tetrahedral manner with three imidazole nitrogen atoms of histidine and one oxygen atom. It is uncertain whether this oxygen atom is a water molecule or a hydroxide ion just from the three-dimensional X-ray crystal structure. The identity of the fourth ligand of zinc is theoretically determined for the first time by performing both combined quantum mechanical and molecular mechanical (QM/MM) simulation and high-level quantum mechanical calculations. All of the results obtained indicate that the fourth ligand in the active site of the reported X-ray crystal structure is a water molecule rather than a hydroxide anion. On the basis of these theoretical results, we note that the experimental observed pH dependence of the proteolytic and hemorrhagic activity of Acutolysin A can be attributed to the deprotonation of the zinc-bound water to yield a better nucleophile, the hydroxide ion. Structural analyses revealed structural details useful for the understanding of acutolysin catalytic mechanism.