화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.113, No.11, 3292-3297, 2009
Dynamics of Carbon Monoxide Photodissociation in Bradyrhizobium japonicum FixL Probed by Picosecond Midinfrared Spectroscopy
The FixL proteins are heme-based bacterial oxygen sensors, distinct from globins in structure and ligand binding properties. To better understand the dynamics of ligand dissociation and binding within the PAS domain fold of FixL, we have carried out picosecond visible pump-midinfrared probe spectroscopy on the isolated PAS domain of FixL from Bradyrhizobium japonicum. We employ the diatomic ligand CO as a probe of the ligand-dissociation pocket dynamics; upon photoexcitation with a visible laser pulse, CO is released and the infrared-active stretch frequency of the CO molecule changes, as it is very sensitive to interactions with the surrounding protein. The infrared absorption difference spectra indicate that the escape of photolyzed CO to solvent is preceded by transient docking within the protein in a manner similar to globins. A small-scale spectral change of the CO molecule on a picosecond time scale is likely due to changes in heme-protein conformation associated with cooling. A larger scale spectral evolution on a nanosecond time scale indicates a structural change in the protein, possibly related to changes in the P-strands associated with the transition from CO-bound to deoxy in BjFixLH (Key, J.; Srajer, V.; Pahl, R.; Moffat, K. Biochemistry 2007, 46, 4706).