화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.113, No.26, 8925-8929, 2009
The Electric Double-Layer Differential Capacitance at and near Zero Surface Charge for a Restricted Primitive Model Electrolyte
The behavior of the differential capacitance of a planar electric double layer containing a restricted primitive model electrolyte in the neighborhood of zero surface charge is investigated by theory and simulation. Previous work has demonstrated that at zero surface charge the differential capacitance has a minimum for aqueous electrolytes at room temperature but can have a maximum for molten salts and ionic liquids. The transition envelope separating the two situations is found for a modified Poisson-Boltzmann theory and a Poisson-Boltzmann equation corrected for the exclusion volume term. Good agreement is found between simulation and the modified Poisson-Boltzmann theory in the neighborhood of the envelope at the reduced temperature of 0.8, while the exclusion volume corrected Poisson-Boltzmann theory shows correct qualitative trends.