화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.46, No.19, 6365-6375, 2008
Synthesis, properties, and sulfonation of novel dendritic multiblock copoly(ether-sulfone)
Multiblock copoly(ether-sulfone)s (PESs) bearing anchor units for the construction of dendritic blocks were synthesized by two-step reactions: (1) synthesis of PES block with both phenoxide end-groups; (2) chain extension and end-capping of the block by use of excess novel hexafunctional agent, hexakis(4-(4-fluorophenyl-sulfonyl)phenyl)benzene. The optimum average block length (n) and amount (x) of the hexafunctional agent used for the synthesis of high-molecular-weight PES without crosslinking were n = 26 and x = 2.6 equiv, respectively. The dendritic blocks in the PES were constructed by the aromatic nucleophilic substitution reaction of the activated aromatic fluoride groups on the anchor units using 4-tritylbenzenethiol. The clean substitution of the fluoride groups in the PES was confirmed by H-1 NMR and F-19 NMR. Three sulfonic acid groups were introduced on the pendant phenyl rings of the trityl groups in the PES by the reaction with chlorosulfonic acid. This is the first example of a dendritic PES bearing clusters of sulfonic acid groups only on the dendritic blocks. Cast films of presulfonated dendritic PES were strong and flexible, however, the membranes of sulfonated dendritic PES were brittle so that the conductivity measurements were not performed. (C) 2008 Wiley Periodicals, Inc.