화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.46, No.23, 2539-2555, 2008
Molecular Dynamics of Copolyester/Clay Nanocomposites as Investigated by Viscoelastic and Dielectric Analysis
We have investigated the molecular dynamics of poly(ethylene glycol-co-cycloxeane-1,4-dimethanol terephthalate) (PETG) nanocomposites based on a organically modified layered silicate. Intercalated namocomposites were prepared by melt compounding technique as evidenced from the X-ray diffraction and transmission electron microscopy studies. Two relaxation processes were observed in pure PETG as well as in the nanocomposites. The low-temperature beta-process was assigned to the local motions of C=O polar groups and the alpha-process was due to the glass-rubber transition or the segmental relaxations associated with the polymer chain backbone. Presence of layered silicates accelerated alpha-relaxation dynamics in the nanocomposites accompanied by a depression in T-g which was attributed to the reduced intermolecular cooperativity between intercalated polymers chains. Additionally, a direct comparison between the viscoelastic and dielectric studies shows excellent agreement between the accelerated alpha dynamics of the nanocomposites. (C) 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2539-2555, 2008