Journal of Polymer Science Part B: Polymer Physics, Vol.46, No.24, 2711-2718, 2008
Physical Association of Polymers with Nanotubes
We use a coarse-grained Monte Carlo model to further investigate the association of polymers with carbon nanotubes (CNTs). Previous studies have shown ordered helical wrapping conformations for a range of investigated parameters. Such adsorbed conformations allow the polymers to spiral up and down the surface of the nanotube, retaining their helical state. We analyze the helical pitch of such conformations, and relate it to nanotube radius and chain stiffness using a simple model. The model reveals that the helical pitch is approximately determined by the matching between the radius of curvature of the helix with the average bending angle of the polymer, determined by its persistence length. In addition, we simulate adsorption of block and triblock copolymers (BCPs) whose different blocks are differentiated by their degree of association with the nanotube (hydrophobic or polar). The hydrophobic blocks of the copolymers initially adsorb in both helical and random conformations of the hydrophobic block, depending on which part of the chain (center or ends) adsorbs first on the CNTs surface. In both configurations, however, the polar block extends away from the nanotube, forming loops and tails for triblock and diBCPs, respectively. Such configurations may improve the interfacial adhesion in polymer-CNTs composites. (C) 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2711-2718, 2008