Journal of Power Sources, Vol.184, No.2, 557-561, 2008
Pillared layered Li1-2xCaxCoO2 cathode materials obtained by cationic exchange under hydrothermal conditions
A simple method has been employed to prepare pillared layered Li1-2xCaxCoO2 cathode materials by cationic exchange under hydrothermal conditions. The synthesized materials were characterized by means of X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), field emission scanning electron microscope (FE-SEM) and galvanostatic charge-discharge cycling. The XRD data of the products show that they are single phases and retain the layered alpha-NaFeO2 type structure. The FE-SEM images of the materials prepared by hydrothermal method show uniform small particles, and the particle size of the materials is about 200 nm. The initial discharge specific capacities of layered LiCoO2 and pillared layered Li0.946Ca0.027CoO2 cathode materials calcined at 800 degrees C for 5 h within the potential range of 3.0-4.3 V (vs. Li+/Li) are 144.6 and 142.3 mAh g(-1), respectively. and both materials retain good charge-discharge cycling performance. However, with increasing upper cutoff voltage, the pillar effect of Ca2+ in Li1-2xCaxCoO2 becomes more significant. The pillared layered Li0.946Ca0.027CoO2 has a higher capacity with an initial discharge specific capacity of 1779 and 215.8 mAh g(-1) within the potential range of 3.0-4.5 and 4.7 V (vs. Li+/Li), respectively, and retains good charge-discharge cycling performance.
Keywords:Lithium battery;Cathode material;Pillared layered Li1-2xCaxCoO2;Cationic exchange;Hydrothermal synthesis