Journal of Power Sources, Vol.185, No.2, 985-992, 2008
A numerical study of flow crossover between adjacent flow channels in a proton exchange membrane fuel cell with serpentine flow field
The focus of this paper is to study the flow crossover between two adjacent flow channels in a proton exchange membrane (PEM) fuel cell with serpentine flow field design in bipolar plates. The effect of gas diffusion layer (GDL) deformation on the flow crossover due to the compression in a fuel cell assembly process is particularly investigated. A three-dimensional structural mechanics model is created to study the GDL deformation under the assembly compression. A three-dimensional PEM fuel cell numerical model is developed in the aforementioned deformed domain to study the flow crossover between the adjacent channels in the presence of the GDL intrusion. The models are solved in COMSOL Multiphysics-a finite element-based commercial software package. The pressure, velocity, oxygen mass fraction and local current density distribution are presented. A parametric study is conducted to quantitatively investigate the effect of the GDL's transport related parameters such as porosity and permeability on the flow crossover between the adjacent flow channels. The polarization curves are also examined with and without the assembly compression considered. It is found that the compression effect is evident in the high current density region. Without considering the assembly compression, the fuel cell model tends to over-predict the fuel cell's performance. The proposed method to simulate the crossover with the deformed computational domain is more accurate in predicting the overall performance. (c) 2008 Elsevier B.V. All rights reserved.