화학공학소재연구정보센터
Journal of Power Sources, Vol.188, No.2, 475-482, 2009
Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model
Thermal management for a solid oxide fuel cell (SOFC) is actually temperature control, due to the importance of cell temperature for the performance of an SOFC. An SOFC stack is a nonlinear and multi-variable system which is difficult to model by traditional methods. A modified Takagi-Sugeno (T-S) fuzzy model that is suitable for nonlinear systems is built to model the SOFC stack. The model parameters are initialized by the fuzzy c-means clustering method, and learned using an off-line back-propagation algorithm. In order to obtain the training data to identify the modified T-S model, a SOFC physical model via MATLAB is established, The temperature model is the center of the physical model and is developed by enthalpy-balance equations. It is shown that the modified T-S fuzzy model is sufficiently accurate to follow the temperature response of the stack, and can be conveniently utilized to design temperature control strategies. (C) 2008 Elsevier B.V. All rights reserved.