Journal of Power Sources, Vol.195, No.2, 522-526, 2010
Electrical behavior of aluminosilicate glass-ceramic sealants and their interaction with metallic solid oxide fuel cell interconnects
A series of alkaline-earth aluminosilicate glass-ceramics (GCs) were appraised with respect to their suitability as sealants for solid oxide fuel cells (SOFCs). The parent composition with general formula Ca0.9MgAl0.1La0.1Si1.9O6 was modified with Cr2O3 and BaO. The addition of BaO led to a substantial decrease in the total electrical conductivity of the GCs, thus improving their insulating properties. BaO-containing GCs exhibited higher coefficient of thermal expansion (CTE) in comparison to BaO-free GCs. An extensive segregation of oxides of Ti and Mn, components of the Crofer22 APU interconnect alloy, along with negligible formation of BaCrO4 was observed at the interface between GC/interconnects diffusion couples. Thermal shock resistance and gas-tightness of GC sealants in contact with yttria-stabilized zirconia electrolyte (8YSZ) was evaluated in air and water. Good matching of CTE and strong, but not reactive, adhesion to the solid electrolyte and interconnect, in conjunction with a high level of electrical resistivity, are all advantageous for potential SOFC applications. (C) 2009 Elsevier B. V. All rights reserved.
Keywords:Glass-ceramic sealants;Solid oxide fuel cell (SOFC);Diopside;Electrical properties;Chemical interaction;Interconnect