Journal of Power Sources, Vol.195, No.5, 1435-1440, 2010
Design for segmented-in-series solid oxide fuel cell through mathematical modeling
The segmented-in-series solid oxide fuel cell comprising fuel channel, anode, cathode and electrolyte layers has been evaluated by developing a two-dimensional model, in which the equations have been solved numerically through finite element methods. The results indicate that the voltage of each membrane electrode assembly (MEA) exhibits a parabola-like curve and is higher than the appointed voltage of unit cell (0.7 V). From fuel inlet to outlet, the voltage of each MEA deceases due to the decreasing local H-2 concentration. When both the interconnector and electrolyte gap lengths are fixed, the cell module with 5 mm long anode gives the maximal power density for the SS-SOFC. Higher power densities can be achieved through increasing the cathode thickness. (C) 2009 Elsevier B.V. All rights reserved.