화학공학소재연구정보센터
Journal of Supercritical Fluids, Vol.50, No.1, 46-53, 2009
Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate
Carbon dioxide sequestration was studied by synthesizing diethyl carbonate (DEC) from ethanol and CO2 under supercritical conditions in the presence of potassium carbonate as a base. The co-reagent was ethyl iodide or a concentrated strong acid. This sequestration reaction occurs in two steps which were studied, separately and in a one-pot reaction. An organic-inorganic carbonate hybrid, potassium ethyl carbonate (PEC) is generated at the end of the first step. This intermediate was characterized and was found to be a target molecule for CO2 capture. Different co-reactants, such as ethyl iodide and concentrated strong Bronsted acid, were compared in the second step and used to investigate the reactivity of the hybrid. With ethyl iodide as the co-reactant, one-pot DEC synthesis gave higher yields (46%) than two-step production. The supercritical CO2 acts as a swelling solvent and compatibilizing agent in the reaction medium, favoring interactions between ethanol and CO2 and between PEC and ethyl iodide. The use of a phase transfer catalyst (PTC) increased DEC production (yield 51%) without increasing the amount of diethyl ether (DEE) produced as a by-product (yield 2%). (C) 2009 Elsevier B.V. All rights reserved.