Journal of the American Ceramic Society, Vol.92, No.10, 2242-2246, 2009
Bi2O3-MoO3 Binary System: An Alternative Ultralow Sintering Temperature Microwave Dielectric
Preparation, phase composition, microwave dielectric properties, and chemical compatibility with silver and aluminum electrodes were investigated on a series of single-phase compounds in the Bi2O3-MoO3 binary system. All materials have ultralow sintering temperatures < 820 degrees C. Eight different xBi(2)O(3)-(1-x) MoO3 compounds between 0.2 <= x <= 0.875 were fabricated and the associated microwave dielectric properties were studied. The beta-Bi2Mo2O9 single phase has a positive temperature coefficient of resonant frequency (TCF) about +31 ppm/degrees C, with a permittivity epsilon(r) = 38 and Q(f) = 12 500 GHz at 300 K and at a frequency of 6.3 GHz. The alpha-Bi2Mo3O12 and gamma-Bi2MoO6 compounds both have negative temperature coefficient values of TCFB similar to -215 and similar to -114 ppm/degrees C, with permittivities of epsilon(r) = 19 and 31, Q(f) = 21 800 and 16 700 GHz at 300 K measured at resonant frequencies of 7.6 and 6.4 GHz, respectively. Through sintering the Bi2O3-2.2MoO(3) at 620 degrees C for 2 h, a composite dielectric containing both alpha and beta phase can be obtained with a near-zero temperature coefficient of frequency TCF = -13 ppm/degrees C and a relative dielectric constant epsilon(r) = 35, and a large Q(f) similar to 12 000 GHz is also observed. Owing to the frequent difficulty of thermochemical interactions between low sintering temperature materials and the electrode materials during the cofiring, preliminary investigations are made to determine any major interactions with possible candidate electrode metals, Ag and Al. From the above results, the low sintering temperature, good microwave dielectric properties, chemical compatibility with Al metal electrode, nontoxicity and price advantage of the Bi2O3-MoO3 binary system, all indicate the potential for a new material system with ultralow temperature cofiring for multilayer devices application.