화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.37, 12212-12212, 2008
Site-specific radical directed dissociation of peptides at phosphorylated residues
Site-specific fragmentation of peptides at phosphorylated serine or threonine residues is demonstrated. This radical directed cleavage is accomplished by a two-step procedure. First the phosphate is replaced with naphthalenethiol using well established Michael Addition chemistry. Second, the modified peptide is electrosprayed and subjected to irradiation at 266 nm. Absorption at naphthalene causes homolytic cleavage of the connecting carbon-sulfur bond yielding a radical in the P-position. Subsequent rearrangement cleaves the peptide backbone yielding a d-type fragment. This chemistry is generally applicable as demonstrated by experiments with several different peptides. Assignment of phosphorylation sites is greatly facilitated by this approach, particularly for peptides containing multiple serine or threonine residues.