Journal of the American Chemical Society, Vol.130, No.40, 13264-13273, 2008
Solution structure of a peptide nucleic acid duplex from NMR data: Features and limitations
This paper describes the results of a 1 D and 2D NMR spectroscopy study of a palindromic 8-base pair PNA duplex GGCATGCC in H2O and H2O-D2O solutions. The H-1 NMR peaks have been assigned for most of the protons of the six central base pairs, as well as for several amide protons of the backbone. The resulting 36 interbase and base-backbone distance restraints were used together with Watson-Crick restraints to generate the PNA duplex structure in the course of 10 independent simulated annealing runs followed by restrained molecular dynamics (MD) simulations in explicit water. The resulting PNA structures correspond to a P-type helix with helical parameters close to those observed in the crystal structures of PNA. Based on the current limited number of restraints obtained from NMR spectra, alternative structures obtained by MD from starting PNA models based on DNA cannot be ruled out and are also discussed.