Journal of the American Chemical Society, Vol.130, No.45, 15081-15086, 2008
Surface Chemistry of Colloidal PbSe Nanocrystals
Solution nuclear magnetic resonance spectroscopy (NMR) is used to identify and quantify the organic capping of colloidal PbSe nanocrystals (Q-PbSe). We find that the capping consists primarily of tightly bound oleic acid ligands. Only a minor part of the ligand shell (0-5% with respect to the number of oleic acid ligands) is composed of tri-n-octylphosphine. As a result, tuning of the Q-PbSe size during synthesis is achieved by varying the oleic acid concentration. By combining the NMR results with inductively coupled plasma mass spectrometry, a complete Q-PbSe structural model of semiconductor core and organic ligands is constructed. The nanocrystals are nonstoichiometric, with a surface that is composed of lead atoms. The absence of surface selenium atoms is in accordance with an oleic acid ligand shell. NMR results on a Q-PbSe suspension, stored under ambient conditions, suggest that oxidation leads to the loss of oleic acid ligands and surface Pb atoms, forming dissolved lead oleate.