Journal of the American Chemical Society, Vol.131, No.32, 11290-11290, 2009
One- to Two-Electron Reduction of an [FeFe]-Hydrogenase Active Site Mimic: The Critical Role of Fluxionality of the [2Fe2S] Core
The one- to two-electron reduction of mu-(1,2-ethanedithiolato)diironhexacarbonyl that has been observed under electrochemical conditions is dependent on scan rate and temperature, suggesting activation of a structural rearrangement. This structural rearrangement is attributed to fluxionality of the [2Fe2S] core in the initially formed anion. Computations support this assessment. Upon an initial. one-electron reduction, the inherent fluxionality of the [2Fe2S] complex anion allows for a second one-electron reduction at a less negative potential to form a dianionic species. The structure of this dianion is characterized by a rotated iron center, a bridging carbonyl. Ligand, and, most significantly, a dissociated Fe-S bond. This fluxionality of the [2Fe2S] core upon reduction has direct implications for the chemistry of [FeFe]-hydrogenase mimics and for iron-sulfur cluster chemistry in general.