화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.131, No.37, 13441-13452, 2009
Synthesis and Optical Spectroscopy of Oligo(1,6-heptadiynes) with a Single Basic Structure Prepared through Adamantylimido-Based Molybdenum Wittig and Metathesis Chemistry
Linear oligoenes of 1,6-heptadiynes (derived from dialkyl dipropargylmalonates) with a single basic structure and up to 23 conjugated double bonds were synthesized through Wittig-like reactions between bimetallic Mo-alkylidene compounds and aldehyde-capped oligoenes. The relatively rigid and isomerically pure oligoenes have structures with alternating cis,trans conjugated double bonds in which the cis double bond is part of a cyclopentene ring. Molecular weights have been confirmed through MALDI-MS measurements of samples purified by H PLC. Optical spectra of the purified samples show significant vibronic resolution, even in room temperature samples, and are remarkably similar to those of simple polyenes and carotenoids. Therefore, a systematic investigation of the dependence of the allowed electronic transition energies (electronic origins) on conjugation lengths has become possible. Studies of seven allowed transitions for molecules with 5-23 double bonds (= N) indicate asymptotic convergence (with approximately a 1/N dependence) to a common long polyene limit at similar to 16 000 cm(-1). The convergence of these electronic transitions agrees with theoretical treatments of polyene excited-state energies and is consistent with the absorption spectra of analogous diethyl dipropargylmalonate polymers (1/N approximate to 0).