Polymer(Korea), Vol.34, No.2, 97-103, March, 2010
6FDA를 포함한 불소계 폴리이미드와 PMMA가 그래프트된 카본나노튜브 나노복합필름의 전기 전도성 연구
Electrical Conductivity Behavior of 6FDA-based Fluorinated Polyimide/PMMA-g-MWCNT Nanocomposite Film
E-mail:
초록
6FDA를 포함한 다양한 폴리이미드/MWCNT의 전도성 복합 필름을 제조하기 위하여 MWCNT 표면에 PMMA를 도입하여 복합필름을 제조하였으며 전기 전도성의 변화를 PMMA-g-MWCNT의 농도 변화에 따라 관찰하였다. 6FDA계 폴리이미드계 복합 필름 내의 MWCNT 분산성은 PMMA-g-MWCNT의 경우 분자간의 상호 인력으로 인하여 분산도가 표면 처리하지 않은 MWCNT에 비하여 매우 높음을 확인하였다. 전기 전도도의 거동은 percolation threshold를 통하여 해석하였으며 그 결과 높은 임계 지수와 낮은 임계 농도를 가지는 6FDA-6FpDA/ PMMA-g-MWCNT 복합체가 DABA(diamino benzoic acid)를 포함한 폴리이미드 복합체에 비하여 높은 분산도를 가짐을 확인하였다.
PMMA was grafted on MWCNT surface in order to prepare conducting film composed of 6FDAbased polyimide/MWCNT. The electrical conductivity of 6FDA-based polyimide/PMMA-g-MWCNT was investigated as a function of PMMA-g-MWCNT content. Dispersion of MWCNT in 6FDA-based polyimide composite film was better than the pristine MWCNT due to the interaction force between PMMA and 6FDA-based polyimide. Electrical conductivity was interpreted by percolation threshold theory. As a result, 6FDA-6FpDA/PMMA-g-MWCNT which have high critical exponents and low critical concentration showed better dispersion than polyimide composite material that contains DABA(diamino benzoic acid).
- Fujiwara A, Iijima R, Suematsu H, Kataura H, Maniwa Y, Suzuki S, Physica B, 323, 227 (2002)
- Lourie O, Wagne HD, Compos. Sci. Tech., 59, 975 (1999)
- Pipes RB, Hubert P, Compos. Sci. Tech., 62, 419 (2002)
- Allaoui A, Bai S, Cheng HM, Bai JB, Compo. Sci. Tech., 62, 1993 (2002)
- Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH, Polymer, 40(21), 5967 (1999)
- Bubert H, Haiber S, Brandl W, Marginean G, Heintze M, Bruser V, Diamond Relat. Mater., 12, 811 (2003)
- Li YH, Wei JQ, Zhang XF, Xu CL, Wu DH, Lu L, Wei BQ, Chem. Phys. Lett., 365(1-2), 95 (2002)
- Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS, Chem. Phys. Lett., 364(3-4), 303 (2002)
- Jou JH, Huang PT, Polymer, 33, 1218 (1992)
- Chung TS, Kafchinski ER, Polymer, 37(9), 1635 (1996)
- Ree M, Shin TJ, Kim SI, Woo SH, Yoon DY, Polymer, 39(12), 2521 (1998)
- Zuo M, Takeichi T, Polymer, 40(18), 5153 (1999)
- Liu HB, Simone CD, Katiyar PS, Scola DA, Int. J. Adh. Adh., 25, 219 (2005)
- Im H, Kim J, Mater. Trans., 50, 1730 (2009)
- Xue Q, Eur. Polym. J., 40, 323 (2004)
- Wu J, McLachlan DS, Phys. Rev. B, 56, 1236 (1997)
- Weidenfeller B, Hofer M, Schilling F, Comp. Part A, 33, 1041 (2002)
- Stauffer D, Aharony A, Introduction to Percolation Theory, Taylor and Francis, London (1992)
- Mamunya EP, Davidenko VV, Lebedev EV, Polym. Comp., 16, 318 (1995)
- Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV, Eur. Polym. J., 43, 949 (2007)
- Bauhofer W, Kovacs JZ, Compo. Sci. Tech., 69, 1486 (2009)
- Mamunya YP, Davydenko VV, Pissis P, Lebedev EV, Eur. Polym. J., 38, 1887 (2002)
- Lux F, J. Mat. Sci., 28, 285 (1993)
- Kim JH, Koros WJ, Paul DR, Polymer, 47(9), 3094 (2006)
- Ramanathan T, Liu H, Brinson LC, J. Polym. Sci. B: Polym. Phys., 43(17), 2269 (2005)
- Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS, Compos. Sci. Tech., 63, 1637 (2003)
- Jiang XW, Bin YZ, Matsuo M, Polymer, 46(18), 7418 (2005)
- Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH, Polymer, 44(19), 5893 (2003)
- Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, J. Appl. Phys., 92, 4024 (2002)
- Wang T, Lei CH, Dalton AB, Creton C, Lin Y, Fernando KAS, Sun YP, Manea M, Asua JM, Keddie JL, Adv. Mater., 18(20), 2730 (2006)
- Lee HH, Chou KS, Shih ZW, Int. J. Adh. Adh., 25, 437 (2005)