화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.1, 81-86, January, 2010
Chemical hydrogen storage and release properties using redox reaction over the Cu-added Fe/Ce/Zr mixed oxide medium
E-mail:
The chemical hydrogen storage (hydrogen reduction) and release (water-splitting oxidation) properties of the Cu-added Fe/Ce/Zr mixed oxide medium were investigated. The media with Cu content ranging from 0 to 5 wt% were prepared by a co-precipitation method using urea as a precipitant. The hydrogen reduction and the water-splitting oxidation on the medium were tested by temperature programmed reduction/oxidation (TPR/TPO) and repeated isothermal redox cycles at 550 ℃ for reduction and 350 ℃ for oxidation. The initial reduction rates and oxidation rates of the media increased with increasing the amount of the Cu additive. In addition, the reactivity of the medium for water-splitting oxidation was enhanced as the CeO2/ZrO2 ratio increased. Especially, the Fe-based mixed oxide mediumwith Cu/CeO2/ZrO2 contents of 3/30/10 wt% (Cu(3%)-Fe-CeO2/ZrO2(3/1)) showed superior performance in chemical hydrogen storage and release. As the results of isothermal redox cycles using the medium, the total amount of hydrogen evolved in water-splitting oxidation was maintained at ca. 8.5 mmol g^(-1)-medium (ca. 1.8 wt% hydrogen storage amounts on the basis of the total medium) over 15 repeated redox cycles.
  1. Sherif SA, Barbir F, Veziroglu TN, Electric. J., 18, 62 (2005)
  2. Hefner RA, Int. J. Hydrogen Energy, 20, 945 (1995)
  3. Kruger P, Int. J. Hydrogen Energy, 26, 1137 (2001)
  4. Moon GY, Lee SS, Lee KY, Kim SH, Song KH, J. Ind. Eng. Chem., 14(1), 94 (2008)
  5. Vajo JJ, Olson GL, Scripta Mater., 56, 829 (2007)
  6. Conte M, Prosini PP, Passerini S, Mater. Sci. Eng. B, 108, 2 (2004)
  7. Lee YS, Kim YH, Hong JS, Suh JK, Cho GJ, Catal. Today, 120(3-4), 420 (2007)
  8. Otsuka K, Mito A, Takenaka S, Yamanaka I, Int. J. Hydrog. Energy, 26(3), 191 (2001)
  9. Otsuka K, Yamada C, Kaburagi T, Takenaka S, Int. J. Hydrogen Energy, 28, 335 (2003)
  10. Otsuka K, Kaburagi T, Yamada C, Takenaka S, J. Power Sources, 122(2), 111 (2003)
  11. Hacker V, Faleschini G, Fuchs H, Fankhauser R, Simader G, Ghaemi M, Spreitz B, Friedrich K, J. Power Sources, 71(1-2), 226 (1998)
  12. Hacker V, Fankhauser R, Faleschini G, Fuchs H, Friedrich K, Muhr M, Kordesch K, J. Power Sources, 86(1-2), 531 (2000)
  13. Urasaki K, Tanimoto N, Hayashi T, Sekine Y, Kikuchi E, Matsukata M, Appl. Catal. A: Gen., 288(1-2), 143 (2005)
  14. Starz KA, Auer E, Lehmann T, Zuber R, J. Power Sources, 84(2), 167 (1999)
  15. Takenaka S, Kaburagi T, Yamada C, Nomura K, Otsuka K, J. Catal., 228(1), 66 (2004)
  16. Hui W, Takenaka S, Otsuka K, Int. J. Hydrogen Energy, 31, 1732 (2006)
  17. Hui W, Gang W, Xinzhi W, Jinbo B, J. Phys. Chem. C, 112, 5679 (2008)
  18. Lee JB, Park CS, Choi SI, Song YW, Kim YH, Yang HS, J. Ind. Eng. Chem., 11, 96 (2008)
  19. Takenaka S, Nomura K, Hanaizumi N, Otsuka K, Appl. Catal. A: Gen., 282(1-2), 333 (2005)
  20. Ryu JC, Lee DH, Kang KS, Park CS, Kim JW, Kim YH, J. Ind. Eng. Chem., 14(2), 252 (2008)
  21. Lee DH, Cha KS, Lee YS, Kang KS, Park CS, Kim YH, Int. J. Hydrogen Energy, 34, 1417 (2009)
  22. Munteanu G, Ilieva L, Andreeva D, Thermochim. Acta, 291(1-2), 171 (1997)
  23. Khan A, Smirniotis PG, J. Mol. Catal. A-Chem., 280(1-2), 43 (2008)
  24. Pineau A, Kanari N, Gaballah I, Thermochim. Acta, 447(1), 89 (2006)
  25. Pineau A, Kanari N, Gaballah I, Thermochim. Acta, 456(2), 75 (2007)
  26. Cha KS, Kim HS, Lee DH, Jo WJ, Lee YS, Kim YH, J. Korean Ind. Eng. Chem., 18(6), 618 (2007)
  27. Bedrane S, Descorme C, Duprez D, Catal. Today, 75(1-4), 401 (2002)
  28. Zhang XR, Shi PF, J. Mol. Catal. A-Chem., 194(1-2), 99 (2003)
  29. Kang KS, Kim CH, Park CS, Kim JW, J. Ind. Eng. Chem., 13(4), 657 (2007)
  30. Cha KS, Kim HS, Yoo BK, Lee YS, Kang KS, Park JS, Kim YH, Int. J. Hydrogen Energy, 34, 1801 (2009)
  31. Ronning M, Huber F, Meland H, Venvik H, Chen D, Holmen A, Catal. Today, 100(3-4), 249 (2005)