화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.22, No.1, 43-50, March, 2010
Molecule-based electrorheological material assembled using β-cyclodextrin as substrate
E-mail:
Molecule-based electrorheological (ER) materials as a novel type of ER materials, the inclusion compound [H2(β-CD-A)-PTA] between p-toluenesulfonic acid (PTA, guest) and H2(β-CD-A) (host) that is dicarboxylic acid of β-cyclodextrin (β-CD) , and the rare earth (RE) complexes [(β-CD-A)-PTA]3RE2 (RE=La, Gd, Y) of H2(β-CD-A)-PTA, were synthesized. The ER performance and dielectric property of the materials were studied. Our results show that the molecule-based ER materials assembled using β-cyclodextrin as a substrate, especially the inclusion compound and its rare earth (RE) complexes exhibit clear ER effect. The inclusion PTA can markedly enhance the ER performance of H2(β-CD-A) material. The ER activity of the yttrium complex is the highest among these materials. The characteristic of the molecule in molecule-based ER materials is an important factor in influencing ER property.
  1. Wei CG, Electrorheological Technology - Theory·Material·Engineering Applications, Beijing Institute of Technology Press, Beijing, China. (2000)
  2. Hao T, Adv. Mater., 13(24), 1847 (2001)
  3. Coulter JP, Weiss KD, J. Intell. Mater. Syst. Struct., 4, 248 (1993)
  4. Winslow WM, US Patent Specification 2417850. (1947)
  5. Block H, Kelly JP, J. Phys. D: Appl. Phys., 21, 1661 (1988)
  6. Hao T, Adv. in Colloid and Interface Sci., 97, 1 (2002)
  7. Jia YL, Shang YL, J. Rare Earths 25 Suppl., 9-14. (2007)
  8. Jia YL, Shang YL, J. Rare Earths 25 Suppl., 24-29. (2007)
  9. Jia YL, Huo L, J. Alloys and Compounds, 478, 538 (2009)
  10. Becher J, Schaumburg K, Molecular Engineering for Advanced Materials, Kluwer Academic Publishers, Dordrecht. (1995)
  11. Braga D, Grepioni F, Crystal Engineering: From Molecules and Crystals to Materials, Dordrecht, Kluwer Academic Publishers, Dordrecht. (1999)
  12. Kahn O, Molecular Magnetism, VCH,. (1993)
  13. Coronado E, Delhaes P, Molecular Magnetism: From Molecular Assemblies to the Device, NATO ASI Series. (1995)
  14. Miller JS, Drillon M, Magnetism: Molecules to Materials, Vol. I-V, Wiley-VCH., 2002-2005
  15. Huang WS, Song FJ, J. South-Central University for Nationalities (Natural Sci. Edition), 19, 76 (2000)
  16. Gao ZW, Zhao XP, Acta Chimica Sinica, 62, 418 (2004)
  17. Bratu I, Kacso I, Spectroscopy-AN International J., 23, 51 (2009)
  18. Nakanishi K, Solomon PH, Infrared Absorption Spectroscopy. 2th Ed., Holden-Day Inc., San Francisco. (1977)
  19. Nakamoto K, Infrared Spectra of Inorganic and Coordination Compound, 4th Ed., John Wiley & Sons Inc., New York. (1986)
  20. Hao T, Kawai A, Ikazaki F, Langmuir, 14(5), 1256 (1998)
  21. Zhao ZG, Colloid and Interface Chem., 1st Ed., The Chemical Industry Press, Beijing, China. (2004)
  22. Choi HJ, Cho MS, Appl. Phys. Lett., 78, 3806 (2001)
  23. Kim SG, Kim JW, Jang WH, Choi HJ, Jhon MS, Polymer, 42(11), 5005 (2001)
  24. Park DP, Lim ST, Lim JY, Choi HJ, Choi SB, J. Appl. Polym. Sci., 112(3), 1365 (2009)
  25. Hong CH, Sung JH, Colloid and Polym. Sci., 287, 583 (2009)
  26. Cho MS, Choi HJ, Jhon MS, Polymer, 46(25), 11484 (2005)
  27. Cho MS, Cho YH, Choi HJ, Jhon MS, Langmuir, 19(14), 5875 (2003)
  28. Cho MS, Choi HJ, Kim KY, Ahn WS, Macromol. Rapid Commun., 23(12), 713 (2002)
  29. Cho MS, Choi HJ, Ahn WS, Langmuir, 20(1), 202 (2004)
  30. Hao T, Xu ZM, Xu YZ, J. Colloid Interface Sci., 190(2), 334 (1997)