화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.2, 174-177, April, 2010
초임계 메탄올을 이용한 유채유 바이오디젤 제조에 대한 반응인자들의 영향
Influence of Reaction Parameters on Preparation of Biodiesel from Rapeseed Oil using Supercritical Methanol
E-mail:
초록
본 연구에서는 유채유로부터 초임계 메탄올을 이용한 무촉매 전이에스터화 반응에 관한 다양한 반응인자들의 영향을 연구하였다. 온도(320∼365 ℃), 시간(0∼20 min), 압력(10∼35 MPa), 오일에 대한 메탄올의 몰 비(1 : 15∼60), 교반속도(0∼500 rpm)들이 지방산메틸에스터 함량에 어떤 영향을 미치는지에 대해 회분식 반응기를 이용하여 실험하였다. 반응온도가 증가함에 따라 지방산메틸에스터의 함량이 증가하였으나 350 ℃, 반응시간 5 min 이후부터는 감소하였다. 유채유에 대한 메탄올 몰 비가 높아질수록 지방산메틸에스터 함량이 높아졌으며, 몰 비(1 : 45)에서 20 MPa 이상의 압력에서는 함량의 변화가 거의 없었다. 100 rpm 이상의 교반속도에서는 교반의 효과가 적음을 확인할 수 있었다. 온도 335 ℃, 반응시간 10 min, 몰 비 1 : 45, 압력 20 MPa, 교반속도 250 rpm인 반응조건에서 최대 지방산메틸에스터 함량인 95%를 얻을 수 있었다.
In this study, non-catalytic transesterification from rapeseed oil using supercritical methanol was carried out by varying the operation parameters such as temperature (320∼365 ℃), time (0∼20 min), pressure (10∼35 MPa), molar ratio of oil to methanol (1 : 15∼60) and agitation speed (0∼500 rpm). In order to evaluate the effects of reaction parameters on the content of fatty acid methyl esters (FAMEs), we carried out the study using a batch reactor. The content of FAMEs increased when the temperature increased. However, the content of FAMEs decreased with temperature above 350 ℃ and time above 5 min. The content of FAMEs increased with increasing the molar ratio of methanol to oil but the content of FAMEs was slightly affected by molar ratio of oil to methanol above 1 : 45 and pressure above 20 MPa. It was found that the agitation speed above 100 rpm slightly affected the content of FAMEs. The highest content of FAMEs in biodiesel (95%) was obtained under the reaction conditions: temperature of 335 ℃, time of 10 min, pressure of 20 MPa, molar ratio of 1 : 45 (oil to methanol) and agitation speed of 250 rpm.
  1. Srivastava A, Prasad R, Renewable and Sustainable Energy Reviews, 4, 111 (2000)
  2. Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1 (1999)
  3. Hong YK, Hong WH, Korean Chem. Eng. Res., 45(5), 424 (2007)
  4. Lim YK, Shin SC, Yim ES, Song HO, J. Korean Ind. Eng. Chem., 19(2), 137 (2008)
  5. Lotero E, Liu YJ, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG, Ind. Eng. Chem. Res., 44(14), 5353 (2005)
  6. Demirbas A, Energy Conv. Manag., 44(13), 2093 (2003)
  7. Meher LC, Vidya Sagar D, Naik SN, Renewable and Sustainable Energy Reviews, 10, 248 (2006)
  8. Lee YW, News & Information for Chemical Engineers, 25, 620 (2007)
  9. Demirbas A, Bioresour. Technol., 99(5), 1125 (2008)
  10. Franck EU, Deul R, Faraday Discuss. Chem. Soc., 66, 191 (1978)
  11. Panayiotou C, Fluid Phase Equilib., 131(1-2), 21 (1997)
  12. Yamaguchi T, Benmore CJ, Soper AK, Chem. Phys., 112, 8976 (2000)
  13. Kim CS, Lee SH, Korean Journal of Organic Agriculture, 14, 237 (2006)
  14. Imahara H, Minami E, Hari S, Saka S, Fuel., 87, 1 (2008)
  15. European Committee for Standardization (CEN), EN 14214:2003, Automotive fuels-fatty acid methyl esters (FAME) for diesel engines-requirements and test methods (2003)