Macromolecules, Vol.42, No.20, 7709-7717, 2009
New Click Chemistry: Polymerization Based on 1,3-Dipolar Cycloaddition of a Homo Ditopic Nitrile N-Oxide and Transformation of the Resulting Polymers into Reactive Polymers
Applicability and productivity of new click chemistry that exploits a nitrile N-oxide as a 1,3-dipole in polymer synthesis were demonstrated by the polymerization of diynes with a homo ditopic aromatic nitrile N-oxide. The nitrile N-oxide was synthesized in situ by the reaction of the corresponding hydroxamoyl chloride with molecular sieves 4 angstrom. The click polymerization of various ditopic diynes and the nitrile N-oxide efficiently produced polyisoxazoles in high yields. The homo ditopic nitrile N-oxide was also useful for the connection of bisacetylene-terminated polymers to give multiblock copolymers in verb high yield. The resulting polyisoxazoles agree well with the structural assignment obtained by the H-1 and C-13 NMR analyses. The generated polyisoxazoles showed improved thermal stability due to the presence of isoxazole moieties. The molecular diversity of the obtained polyisoxazoles was confirmed by the selective transformations of the isoxazole moieties into beta-aminoenone or beta-aminoalcohol moieties with high conversion rates. The thermal decomposition temperature of the transformed polymers was lower than that of the polyisoxazoles because of the formations of abundant amino and hydroxyl groups. Furthermore, the functionality of poly(beta-aminoalcohol) was proven by quantitatively cross-linking the polymers by treatment with terephthal-aldehyde or methylene diphenyl diisocyanate.