화학공학소재연구정보센터
Langmuir, Vol.24, No.16, 9006-9010, 2008
Surface functionalization and characterization of magnetic polystyrene microbeads
A new approach to the surface functionalization of magnetic polystyrene microbeads with chloroacetyl chloride in the presence of aluminum chloride was reported. Composite microbeads consisting of polymer-coated iron oxide nanoparticles were prepared by spraying suspension polymerization. Functional chloride groups were introduced onto the sur face of magnetic polystyrene microbeads by surface chemical reaction without destroying the magnetite nanoparticles within the microbeads. First, a complex was synthesized by a reaction between aluminum chloride and chloroacetyl chloride. Then, the complex was added dropwise to the solution of magnetic polystyrene microbeads, and a surface acylation reaction between complex and polystyrene microbeads was carried out. Subsequently, the amino groups were coupled to the magnetic microbeads via an ammonolysis reaction between ethylenediamine and chloride groups on the. acylated magnetic polystyrene microbeads. The chemical composition, surface functional groups, and magnetism of the magnetic polystyrene microbeads before and after surface functionalization were characterized by Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results showed that the surface functionalization reaction had little impact on the magnetism of the microbeads. The content of surface amino groups on the magnetic polystyrene microbeads was found to be 0.2 mmol/g. An affinity dye, Cibacron Blue F3G-A (CB), was then immobilized to prepare a magnetic affinity adsorbent. It was confirmed from X-ray photoelectron spectroscopy spectra that, the CB molecules were covalently coupled on the magnetic microbeads.