Langmuir, Vol.24, No.17, 9661-9667, 2008
Immobilization of light-harvesting chlorophyll a/b complex (LHCIIb) studied by surface plasmon field-enhanced fluorescence spectroscopy
The major light-harvesting chlorophyll a/b complex (LHCIIb) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that engage in rapid excitation energy transfer. This property makes LHCIIb potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Such applications Would require the immobilization of LHCIIb (or similar dye-protein complexes) on a solid surface. In this work, the immobilization of recombinant LHCIIb is tested and optimized on functionalized gold surfaces via a histidine(6) tag (His tag) in the protein moiety. Immobilization efficiency and kinetics are analyzed by using surface plasmon resonance (SPR) and surface plasmon field-enhanced fluorescence spectroscopy (SPFS). The latter was also used to assess the integrity of immobilized LHCIIb by recording Chl b-sensitized Chl a emission spectra. Since His tags have been included in a substantial number of recombinant proteins, the immobilization technique developed here for LHCIIb presumably can be extended to a large range of other membrane and water-soluble proteins.