Langmuir, Vol.25, No.2, 1253-1258, 2009
[Ru(dpp)(3)][(4-ClPh)(4)B](2) Nanoislands Directly Assembled on an ITO Electrode Surface and Its Electrogenerated Chemiluminescence
In this work, solid-state tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ditetrakis(4-chlorophenyl)borate ([Ru(dpp)(3)][(4-Clph)(4)B](2)) nanoislands are assembled spontaneously and simultaneously on an indium-doped tin oxide (ITO) glass electrode surface via a facile dewetting procedure. The fabrication process is very simple and also amenable to mass production. The as-prepared ruthenium complex nanoislands exhibit useful properties. The electrode is more electrochemically active and can produce strong, stable, reproducible solid-state electrochemiluminescence (ECL) signals using oxalate as the coreactant. The self-assembled nanoislands exhibit semi conductor-like broad, red-shift ECL spectrum. More importantly, they extend the application of the ruthenium complex ECL system from the usual alkaline to acidic conditions. The pH turn-off behavior of the ECL is observed for the first time and can serve as an ultrasensitive pH sensor around physiological pH 7.0. The solid-state [Ru(dpp)(3)][(4-Clph)(4)B](2) ECL signal is efficiently inhibited by phenol even at a very low concentration (i.e., 20 nM), thus providing the potential for the determination of phenolic compounds in practical applications.