화학공학소재연구정보센터
Langmuir, Vol.25, No.5, 3224-3231, 2009
Inverse Nonionic Microemulsion Studied by Means of H-1, C-13, and PGSTE NMR during Silica Nanoparticle Synthesis
The soluble species present in the reaction mixture that leads to silica nanoparticle production through the base catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) and the successive condensation were investigated in situ, under the actual synthesis conditions, by means of H-1, C-13, and Si-29 NMR spectroscopy. The two former nuclei, owing to higher sensitivity and their presence both in the reacting species and in the constituents of the W/O microemulsion (cyclohexane-igepal-CA-520-concentrated ammonia solution) afforded insight into the inverse microemulsion and allowed us to assess the kinetic rate of the hydrolysis step. It was verified that the microemulsion microstructure is maintained during the reaction. The characterization of the final nanoparticles was carried out by means of transmission electron microscopy (TEM). Special attention was paid to the reaction medium, and an extended assignment of the H-1 and C-13 resonances of the surfactant headgroup is reported together with the discussion of the changes they undergo due to the environmental modifications induced by transition from cyclohexane solution to W/O microemulsion and further to NH3 containing W/O microemulsion. The self-diffusion coefficient measurements revealed that NH3 exchanges among the inverse micelles diffusing through cyclohexane and confirmed that the preferred localization for ethanol, a byproduct of the reaction, is the bulk oil.