화학공학소재연구정보센터
Langmuir, Vol.25, No.17, 10230-10236, 2009
Self-Assembly of Double-Tail Anionic Surfactant Having Cyanobiphenyl Terminal Groups in Water
This study reports the interfacial properties and lyotropic liquid crystal formation of sodium 1,2-bis{6-[4-(4-cyanophenyl)phenyloxy]hexyloxycarbonyl}ethanesulfonate (SBCPHS), which is a double-tail surfactant with cyanobiphenyl terminal groups, in water. Polarized microscopic observation of water/SBCPHS mixtures revealed the presence of columnar and lamellar phases. In the lamellar phase, myelin figures representing multilamellar tubes were observed, and sonic of these figures had a double-helix structure. In order to examine these liquid crystal structures in detail, the bilayer thickness of the lamellar tubes and the lattice parameters of the columnar phase were measured by small-angle X-ray scattering analysis. Four scattering peaks that could be ascribed to C2/m symmetry were observed for the columnar phase. The bilayer thickness and one of the lattice parameters were smaller than twice the molecular length of SBCPHS this showed that the liquid crystal phases had intercalated structures. Comparison of SBCPHS with a typical double-tail hydrocarbon surfactant revealed that the cyanobiphenyl terminal groups in the former helped increase the stability of the liquid crystal formed at low temperatures. The stabilizing effect of the cyanobiphenyl terminal groups on the liquid crystals could have been driven by electrostatic intermolecular interactions between the terminal groups in antiparallel arrangement of the SBCPHS molecules.