Langmuir, Vol.25, No.19, 11467-11471, 2009
Phase Separation at the Surface of Poly(ethylene oxide)-Containing Biodegradable Poly(L-lactic acid) Blends
The surface chemistry and in-depth distribution of the composition of a poly(ethylene oxide) (PEO)-containing biodegradable poly(L-lactic acid) (PLLA) blend matrix system have been investigated using X-ray photoelectron spectroscopy (XPS). This study reports detailed quantitative compositional information using a novel numerical method for determining depth profiles. The PEO system studied is an amphiphilic Pluronic P104 surfactant, PEO-b-poly(propylene oxide) (PPO)-b-PEO. The extent of phase separation is analyzed by determining the surface enrichment of the PEO component via measurement of chemical composition at the polymer-air interface. For this blend system, the combination of the PPO component in the Pluronic surfactants drives the formation of a surface excess of Pluronic in the blends with PLLA. The surface excess profile shows a rapid increase in Pluronic surface composition versus bulk Pluronic mass fractions of 1-5%, but the profile levels off above bulk Pluronic mass fractions of 5%.