Langmuir, Vol.26, No.6, 3955-3961, 2010
Fast Assembly of Cyanine Dyes into Aggregates onto [6,6]-Phenyl C-61-Butyric Acid Methyl Ester Surfaces from Organic Solvents
Supramolecular agglomerates of organic colorants based on noncovalent interactions are promising candidates for the development of sensors, optoelectronics, lighting, or photovoltaics. However, their fast and defect-free fabrication oil large scales using low-cost technologies has proven elusive so far, Here, we introduce a so far unreported mechanism to induce molecular order in cyanine dyes within minutes from organic solvents by self-assembly. Spin coating blends of a cyanine dye and a soluble fullerene derivative ([6,6]-phenyl C-61-butyric acid methyl ester (PCBM)) from apolar, aprotic solvents leads to phase-separated structures oil the micrometer scale. With this superordinated phase structure, adjustment of dye aggregation is possible, leading to novel optical properties of the film emerging from dye self-assembly on the nanometer scale. In the primary process, semiporous PCBM domains act as nucleation sites for H-aggregates. H-aggregates can then be reconstructed into J-aggregates by dissolving PCBM from the film. Unexpectedly, the method even works for sterically hindered cyanine dyes that are known for their reduced tendency to aggregate. Additionally, selective removal of H-aggregates leaves a template of PCBM nanocrystals, onto which cyanine dye monomers readsorb from solution, forming H-aggregates of similar quality,