Langmuir, Vol.26, No.6, 3998-4003, 2010
Number of Independent Parameters in the Potentiometric Titration of Humic Substances
With the advent of high-precision automatic titrators operating in pH stat mode, measuring the mass balance of protons in solid-solution mixtures against the pH of natural and synthetic polyelectrolytes is now routine. However, titration curves of complex molecules typically lack obvious inflection points, which complicates their analysis despite the high-precision measurements. The calculation of site densities and median proton affinity constants (pK) from such data can lead to considerable covariance between fit parameters. Knowing the number of independent parameters that can be freely varied during the least-squares minimization of it model fit to titration data is necessary to improve the model's applicability. This number was calculated for natural organic matter by applying principal component analysis (PCA) to a reference data set of 47 independent titration curves from fulvic and humic acids measured at I = 0.1 M. The complete data set was reconstructed statistically from pH 3.5 to 9.8 with only six parameters, compared to seven or eight generally adjusted with common semi-empirical speciation models for organic matter, and explains correlations that occur with the higher number of parameters. Existing proton-binding models are not necessarily overparametrized, but instead titration data lack the sensitivity needed to quantify the full set of binding properties of humic materials. Model-independent conditional pK values can be obtained directly from the derivative of titration data, and this approach is the most conservative. The apparent proton-binding constants of the 23 fulvic acids (FA) and 24 humic acids (HA) derived from a high-quality polynomial parametrization of the data set are pK(H.COOH)(FA) = 4.18 +/- 0.21, pK(H.ph-OH)(FA) = 9.29 +/- 0.33, pK(H,COOH)(HA) = 4.49 +/- 0.18, and pK(H,Ph-OH)(HA) = 9.29 +/- 0.38. Their values at other ionic strengths are more reliably calculated with the empirical Davies equation than any existing model fit.