화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.33, No.6, 1585-1592, 1994
Nonisothermal Differential Absorption Kinetics for Binary Gas-Mixture
Analytical solutions are developed for non-isothermal adsorption kinetics of a binary gas mixture in a differential adsorption test (DAT). Linear driving force models are used to describe the adsorption kinetics of individual components. It is demonstrated that a very small change in the adsorbent temperature can introduce a substantial difference between isothermal and non-isothermal kinetic behaviors of the components of the mixture. The fractional uptake of a component of the mixture can exceed unity and go through a maximum value during the DAT due to the non-isothermal effects. An isothermal kinetic model for binary mixture adsorption using both straight and cross transport coefficients can also describe such uptake behavior, but the model parameters will be artificial due to the ignorance of adsorbent non-isothermality.