- Previous Article
- Next Article
- Table of Contents
Journal of the Electrochemical Society, Vol.156, No.6, A430-A434, 2009
Effect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries
The effect of LiCoO2 cathode nanoparticle size on high-rate performance in Li-ion batteries was investigated using hydrothermally prepared oleylamine-capped LiCoO2 nanoparticles with a particle size of 50 nm obtained at 200 degrees C. Upon annealing as-prepared LiCoO2 at 500, 700, and 900 degrees C, the particle size increased to 100 nm, 300 nm, and 1 mu m, respectively. Ex situ transmission electron microscopy and X-ray diffraction results indicated that the thickness of the solid electrolyte interface (SEI) affected the particle's electrochemical properties at high rates. A LiCoO2 cathode with a smaller particle size had a thicker SEI layer, which acted as a barrier for Li-ion diffusion, resulting in deteriorated rate capabilities at higher C rates. However, irrespective of the particle size, there was no structural degradation after cycling. Rate capability tests were performed under two different electrode densities (3.4 and 2.8 g/cm(3)), and LiCoO2 with a particle size of 300 nm demonstrated the best rate capability at higher C rates. Upon extended cycling at the 7 C rate, LiCoO2 with a particle size of 300 nm exhibited 87 and 150 mAh/g under 3.4 and 2.8 g/cm(3), respectively.
Keywords:annealing;cathodes;electrochemical electrodes;nanoparticles;secondary cells;surface diffusion;transmission electron microscopy;X-ray diffraction