화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.4, 1132-1138, July, 2010
Steam reforming of liquid petroleum gas over Mn-promoted Ni/γ-Al2O3 catalysts
E-mail:
Three different Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3, Mn-Ni/γ-Al2O3 and Ni/Mn/γ-Al2O3, were prepared and applied to the steam reforming of liquid petroleum gas (LPG) mainly composed of propane and butane. For comparison, Ni/γ-Al2O3 catalysts containing different amount of Ni were also examined. In the case of the Ni/γ-Al2O3 catalysts, 4.1 wt% Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. Among the various Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. It also exhibited a similar H2 formation rate compared with Ni/γ-Al2O3. Several characterization techniques--N2 adsorption/desorption, X-ray diffraction (XRD), CO chemisorptions, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and CHNS analysis--were employed to characterize the catalysts. The catalytic activity increased with increasing amount of chemisorbed CO for the Mn-promoted Ni/γ-Al2O3 catalysts. The highest proportion of Mn^(4+) species was observed for the most stable catalyst.
  1. Song CS, Catal. Today, 77(1-2), 17 (2002)
  2. Kolb G, Zapf R, Hessel V, Lowe H, Appl. Catal. A: Gen., 277(1-2), 155 (2004)
  3. Ahmed K, Gamman J, Foger K, Solid State Ion., 152, 485 (2002)
  4. Holladay JD, Jones EO, Phelps M, Hu JL, J. Power Sources, 108(1-2), 21 (2002)
  5. Craciun R, Shereck B, Gorte RJ, Catal. Lett., 51(3-4), 149 (1998)
  6. Ming QM, Healey T, Allen L, Irving P, Catal. Today, 77(1-2), 51 (2002)
  7. Geissler K, Newson E, Vogel F, Truong TB, Hottinger P, Phys.Chem. Chem. Phys., 3, 289 (2001)
  8. Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Appl. Catal. A: Gen., 241(1-2), 261 (2003)
  9. Cheekatamarla PK, Finnerty CM, J. Power Sources, 160(1), 490 (2006)
  10. Rostrup-Nielsen JR, Catal. Today., 18, 305 (1993)
  11. Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496 (2005)
  12. Richardson JT, Propp JL, J. Catal., 98, 457 (1986)
  13. Wynblatt P, Gjoestein NA, Prog. Solid State Chem., 9, 21 (1975)
  14. Zhang ZL, Verykios XE, Appl. Catal. A: Gen., 138(1), 109 (1996)
  15. Wei JM, Xu BQ, Li JL, Cheng ZX, Zhu QM, Appl. Catal. A: Gen., 196(2), L167 (2000)
  16. Raberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Sjastad AO, J. Catal., 249(2), 250 (2007)
  17. Trimm DL, Catal. Today, 37(3), 233 (1997)
  18. Wang SB, Lu GQM, Appl. Catal. B: Environ., 16(3), 269 (1998)
  19. Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T, Appl. Catal. A: Gen., 144(1-2), 111 (1996)
  20. Bradford MC, Vannice MA, Appl. Catal. A: Gen., 142(1), 73 (1996)
  21. Chen YG, Yamazaki O, Tomishige K, Fujimoto K, Catal. Lett., 39(1-2), 91 (1996)
  22. Chen YG, Tomishige K, Yokoyama K, Fujimoto K, J. Catal., 184(2), 479 (1999)
  23. Tomishige K, Chen YG, Fujimoto K, J. Catal., 181(1), 91 (1999)
  24. Christensen KO, Chen D, Lodeng R, Holmen A, Appl. Catal. A: Gen., 314(1), 9 (2006)
  25. Hou ZY, Yokota O, Tanaka T, Yashima T, Appl. Catal. A: Gen., 253(2), 381 (2003)
  26. Su BL, Guo SD, in Delmen, Formment GF(Eds.), Catalyst Deactivation, Elsevier, Amsterdam, 325 (1999)
  27. Trimm DL, Catal. Today, 49(1-3), 3 (1999)
  28. Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496 (2005)
  29. Natesakhawat S, Oktar M, Ozkan US, J. Mol. Catal. A-Chem., 241(1-2), 133 (2005)
  30. Seok SH, Choi SH, Park ED, Han SH, Lee JS, J. Catal., 209(1), 6 (2002)
  31. Chmielarz L, Kustrowski P, Dziembaj R, Thermochm. Acta., 395, 225 (2002)
  32. Schulze K, Makowski W, Chyzi R, Appl Clay. Sci., 18, 59 (2001)
  33. Kim JH, Suh DJ, Park TJ, Kim KL, Appl. Catal. A: Gen., 197(2), 191 (2000)