Korean Journal of Chemical Engineering, Vol.27, No.4, 1132-1138, July, 2010
Steam reforming of liquid petroleum gas over Mn-promoted Ni/γ-Al2O3 catalysts
E-mail:
Three different Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3, Mn-Ni/γ-Al2O3 and Ni/Mn/γ-Al2O3, were prepared and applied to the steam reforming of liquid petroleum gas (LPG) mainly composed of propane and butane. For comparison, Ni/γ-Al2O3 catalysts containing different amount of Ni were also examined. In the case of the Ni/γ-Al2O3 catalysts, 4.1 wt% Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. Among the various Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3 showed the stable catalytic activity with the
least amount of coke formation. It also exhibited a similar H2 formation rate compared with Ni/γ-Al2O3. Several characterization techniques--N2 adsorption/desorption, X-ray diffraction (XRD), CO chemisorptions, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and CHNS analysis--were employed to characterize the catalysts. The catalytic activity increased with increasing amount of chemisorbed CO for the Mn-promoted Ni/γ-Al2O3 catalysts. The highest proportion of Mn^(4+) species was observed for the most stable catalyst.
- Song CS, Catal. Today, 77(1-2), 17 (2002)
- Kolb G, Zapf R, Hessel V, Lowe H, Appl. Catal. A: Gen., 277(1-2), 155 (2004)
- Ahmed K, Gamman J, Foger K, Solid State Ion., 152, 485 (2002)
- Holladay JD, Jones EO, Phelps M, Hu JL, J. Power Sources, 108(1-2), 21 (2002)
- Craciun R, Shereck B, Gorte RJ, Catal. Lett., 51(3-4), 149 (1998)
- Ming QM, Healey T, Allen L, Irving P, Catal. Today, 77(1-2), 51 (2002)
- Geissler K, Newson E, Vogel F, Truong TB, Hottinger P, Phys.Chem. Chem. Phys., 3, 289 (2001)
- Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Appl. Catal. A: Gen., 241(1-2), 261 (2003)
- Cheekatamarla PK, Finnerty CM, J. Power Sources, 160(1), 490 (2006)
- Rostrup-Nielsen JR, Catal. Today., 18, 305 (1993)
- Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496 (2005)
- Richardson JT, Propp JL, J. Catal., 98, 457 (1986)
- Wynblatt P, Gjoestein NA, Prog. Solid State Chem., 9, 21 (1975)
- Zhang ZL, Verykios XE, Appl. Catal. A: Gen., 138(1), 109 (1996)
- Wei JM, Xu BQ, Li JL, Cheng ZX, Zhu QM, Appl. Catal. A: Gen., 196(2), L167 (2000)
- Raberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Sjastad AO, J. Catal., 249(2), 250 (2007)
- Trimm DL, Catal. Today, 37(3), 233 (1997)
- Wang SB, Lu GQM, Appl. Catal. B: Environ., 16(3), 269 (1998)
- Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T, Appl. Catal. A: Gen., 144(1-2), 111 (1996)
- Bradford MC, Vannice MA, Appl. Catal. A: Gen., 142(1), 73 (1996)
- Chen YG, Yamazaki O, Tomishige K, Fujimoto K, Catal. Lett., 39(1-2), 91 (1996)
- Chen YG, Tomishige K, Yokoyama K, Fujimoto K, J. Catal., 184(2), 479 (1999)
- Tomishige K, Chen YG, Fujimoto K, J. Catal., 181(1), 91 (1999)
- Christensen KO, Chen D, Lodeng R, Holmen A, Appl. Catal. A: Gen., 314(1), 9 (2006)
- Hou ZY, Yokota O, Tanaka T, Yashima T, Appl. Catal. A: Gen., 253(2), 381 (2003)
- Su BL, Guo SD, in Delmen, Formment GF(Eds.), Catalyst Deactivation, Elsevier, Amsterdam, 325 (1999)
- Trimm DL, Catal. Today, 49(1-3), 3 (1999)
- Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496 (2005)
- Natesakhawat S, Oktar M, Ozkan US, J. Mol. Catal. A-Chem., 241(1-2), 133 (2005)
- Seok SH, Choi SH, Park ED, Han SH, Lee JS, J. Catal., 209(1), 6 (2002)
- Chmielarz L, Kustrowski P, Dziembaj R, Thermochm. Acta., 395, 225 (2002)
- Schulze K, Makowski W, Chyzi R, Appl Clay. Sci., 18, 59 (2001)
- Kim JH, Suh DJ, Park TJ, Kim KL, Appl. Catal. A: Gen., 197(2), 191 (2000)