화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.4, 1301-1309, July, 2010
Influence of aging conditions on textural properties of water-glass-based silica aerogels prepared at ambient pressure
E-mail:
The experimental results of aging time and temperature on the textural properties of water-glass (sodium silicate)-based silica aerogels are reported and discussed. Aging of the hydrogel for different times and temperatures led to an ability to increase the stiffness and strength of the networks. These improvements enabled the gel to withstand ambient pressure drying (APD) and, consequently, preserve the highly porous silica network without collapse. The pore size and volume increased with increasing aging temperature and time, while the specific surface area decreased. Monolithic aerogels with extremely low bulk density (~0.069 g/cm3), high specific surface area (820 m2g-1), large cumulative pore volume (3.8 cm3g-1), and high porosity (~96%) were obtained by aging at 60 ℃ for 18 hours. Therefore, easy synthesis of monolithic silica aerogels at ambient pressure is achievable using a relatively inexpensive silica precursor (sodium silicate).
  1. Hrubesh LW, Chem. Ind., 17, 824 (1990)
  2. Bond GC, Flamerz S, Appl. Catal., 33, 219 (1987)
  3. Rao AV, Kalesh RR, Sci. Technol. Adv. Mater., 4, 509 (2003)
  4. Kim K, Jang KY, Upadhey RS, J. Amer. Ceram. Soc., 78, 1997 (1991)
  5. Pajonk GM, Appl. Catal., 72, 217 (1991)
  6. Akimov YK, Instruments and Experimental Techniques., 46, 287 (2003)
  7. Pajonk GM, Tichner SJ, in: J. Fricke (Ed.), Processings of the First International symposium on Aerogels, Wurzburg, Germany, 23-25, September 193 (1985)
  8. Reed ST, Ashley CS, Brinker CJ, Walko RJ, Ellefsoon R, Gill J, SPIE., 1328, 220 (1990)
  9. Cunha JP, Neves F, Lopes MI, Nucl. Instrum. Methods Phys. Res. A., 452, 401 (2001)
  10. Brinker CJ, Sherere SW, Sol-Gel Sci., Academic Press, San Diego, 501 (1990)
  11. Sumiyoshi T, Adachi I, Enomoto R, Iijima T, Suda R, Yokoyama M, Yokogawa H, J. Non-Cryst. Solids., 225, 369 (1998)
  12. Schmidt M, Schwertfeger F, J. Non-Cryst. Solids., 225, 364 (1998)
  13. Hrubesh LW, J. Non-Cryst. Solids., 225, 335 (1998)
  14. Fesmire JE, Cryogenics., 46, 111 (2006)
  15. Yim TJ, Kim SY, Yoo KP, Korean J. Chem. Eng., 19(1), 159 (2002)
  16. Harris TM, Land VD, Teeters DC, J. Non-Cryst. Solids., 283, 11 (2001)
  17. Lee CJ, Kim GS, Hyun SH, J. Sol-Gel Sci. Technol., 37, 2237 (2002)
  18. Shi F, Wang L, Liu J, Mater. Lett., 60, 29 (2006)
  19. Hwang HJ, Kim CE, Yoon JS, J. Sol-Gel Sci. Technol., 49, 47 (2009)
  20. Rao AV, Rao AP, Shewale PM, Bhagat SD, J. Sol-Gel Sci. Technol., 49, 285 (2009)
  21. Schwertfeger F, Frank D, Schmidt M, J. Non-Cryst. Solids., 225, 24 (1998)
  22. Smith DM, Stein D, Anderson JM, Ackerman W, J. Non-Cryst. Solids., 186, 104 (1995)
  23. Kang SK, Choi SY, J. Mater. Sci., 35(19), 4971 (2000)
  24. Jung HH, Hwang SW, Hyun SH, Ahn YS, J. Sol-Gel Sci.Tech., 41, 139 (2007)
  25. Hæreid S, Anderson J, Einarsrud MA, Hua DW, Smith DM, J.Non-Cryst. Solids., 185, 221 (1995)
  26. Reichenauer G, J.Non-Cryst. Solids., 350, 189 (2004)
  27. Suh DJ, Park TJ, Sonn JH, Han HY, Lim JC, Korean J. Chem. Eng., 17(1), 101 (2000)
  28. He F, Zhao H, Qu X, Zhang C, Qiu W, J. Mater. Process.Tech., 209, 1621 (2009)
  29. Jarzebski AB, Lorenc J, Aristov YI, Lisitza N, J. Non-Cryst.Solids., 190, 198 (1995)
  30. Takahasi R, Nakanishi K, Soga N, J. Non-Cryst. Solids., 189, 66 (1995)
  31. Li ZJ, Liu CR, Zhao QS, J. Non-Cryst. Solids., 265, 189 (2000)
  32. Shewale PM, Rao AV, Rao AP, Bhagat SD, J. Sol-Gel Sci. Technol., 49, 285 (2009)
  33. Hwang SW, Kim TY, Hyun SH, J. Colloid Interface Sci., 322(1), 224 (2008)
  34. Brinker CJ, Sherere SW, AAPG Bull., Academic Press, San Diego, 662 (1990)
  35. Rouquerol F, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK, Pure Appl. Chem., 66, 1739 (1994)
  36. Rouquerol F, Sing KSW, Jean rouquerol - adsorption by powders and porous solids: Principles., Methodology and Applications, Academic Press (1998)
  37. Bi ZC, Zhang ZS, Xu F, Qian YY, Yu JY, J. Colloid Interface Sci., 214(2), 368 (1999)
  38. Gesser HD, Goswami PC, Chem. Rev., 89, 765 (1989)
  39. Bhagat SD, Kim YH, Yi GB, Ahn YS, Yeo JG, Microporous and Mesoporous Materials., 253, 3231 (2006)
  40. Wang LJ, Zhao SY, Yang M, Mater. Chem. Phys., 113(1), 485 (2009)
  41. Deshpande R, Smith DM, Brinker CJ, J. Non-Cryst. Solids., 144, 32 (1992)
  42. Zhou XC, Zhong LP, Xu YP, Inorganic Mater., 44, 976 (2008)
  43. Laczka M, Kowalska KC, Kogul M, J. Non-Cryst. Solids., 287, 10 (2007)
  44. Brinker CJ, Scherer GW, J. Non-Cryst. Solids., 70, 301 (1985)
  45. Smitha S, Shajesh P, Aravind PR, Rajesh Kumar S, Krishna Pillai P, Warrier KGK, Microporous and Mesoporous Materials., 91, 286 (2006)
  46. Bangi UKH, Rao AV, Rao AP, Sci. Technol. Adv. Mater., 9, 35006 (2008)
  47. Rassy HE, Pierre AC, J. Non-Cryst. Solids., 351, 1603 (2005)
  48. Jeong AY, Goo SM, Kim DP, J. Sol-Gel Technol., 19, 483 (2000)
  49. Rao AP, Rao AV, Pajonk GM, Shewale PM, J. Mater. Sci., 42(20), 8418 (2007)
  50. Scherer GW, Haereid S, Nilsen E, Einarsud MA, J. Non-Cryst. Solids., 202, 104 (1996)
  51. Rao AP, Rao AV, Gurav JL, J. Porous Mater., 15, 507 (2008)
  52. Rao AP, Rao AV, Pajonk GM, Appl. Surf. Sci., 253(14), 6032 (2007)
  53. Pierre AC, Elaloui E, Pajonk GM, Langmuir, 14(1), 66 (1998)
  54. Li WC, Lu AH, Guo SC, J. Colloid Interface Sci., 254(1), 153 (2002)
  55. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57(4), 603 (1985)