화학공학소재연구정보센터
Polymer, Vol.49, No.6, 1594-1603, 2008
Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks
This study demonstrates the successful implications of blending technique cum chemical modification for the fabrication of high performance polymeric membranes for gas separation applications. The effect of variation in composition on miscibility and microstructure, gas permeability and selectivity of blend membranes is investigated. It is found that augmentation in PBI composition results in enhancement in gas separation performance of membranes which is attributed mainly to the effect of diffusivity selectivity. Analysis of the microstructure of membranes confirms the variations in chain packing density, d-spacing and segmental mobility of polymer chains as a result of blending. Separation performance of membranes is further ameliorated through chemical modification of blend constituents. Modification of PBI phase with p-xylene dichloride brings about slight improvements in selectivity performance, especially for H-2/CO2 and H-2/N-2. In contrast, the selectivity of membranes is improved significantly after cross-linking of Matrimid phase with p-xylene diamine. The results indicate that higher tendency of Matrimid toward cross-linking reaction contributes more in controlling the transport properties of membranes through diffusion coefficient by increase in chain packing density and diminishing the excess free volumes. Results obtained in this study reveal the promising features of developed membranes for gas separation applications with great potential for hydrogen separation and purification on industrial scale. (c) 2008 Elsevier Ltd. All rights reserved.