화학공학소재연구정보센터
Polymer, Vol.49, No.23, 5169-5176, 2008
On the molecular properties of polyaniline: A comprehensive theoretical study
A comprehensive study about the molecular and electronic properties of the different forms of polyaniline has been developed using quantum mechanical calculations. Initially the performance of different ab initio and DFT quantum mechanical methods has been evaluated by comparing the results provided for small model compounds containing two repeating units. After this, calculations on the emeraldine base, leucoemeraldine base, pernigraniline base and emeraldine salt (monocationic and dicationic) forms of oligoanilines with n repeating units, where n ranged from 5 to 13, have been performed using the BH&H/6-31G(d) method, which was found to be a very suitable theoretical procedure. Interestingly, calculations indicate that the distribution in blocks of the repeating units containing amine and imine nitrogen is largely preferred for the emeraldine base form. On the other hand, the molecular structure and band gap of the emeraldine base, leucoemeraldine base and pernigraniline base forms have been rationalized according to their differences in the conjugation of the C6H4 rings. Calculations on cationic oligoanilines indicate that, when the emeraldine salt form presents a doublet electronic state, the positive charge and the spin density are located in the middle of the chain extending through five consecutive repeating units. (C) 2008 Elsevier Ltd. All rights reserved.