Polymer, Vol.50, No.15, 3693-3697, 2009
Synthesis and properties of highly hydrophilic polyurethane based on diisocyanate with ether group
Highly hydrophilic polyurethane elastomers (PUEs) were synthesized from 1,2-bis(isocyanate) ethoxyethane (TEGDI), poly(ethylene oxide-co-propylene oxide) copolyol (EOPO) and 1,4-butane diol/1,1,1-tri-methylol propane (75/25) (wt/wt) by a prepolymer method. 4,4'-Diphenylmethane diisocyanate (MDI)-based PUEs were synthesized as a control as well. Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) measurements revealed that the degree of microphase separation of the TEGDI-based PUEs was much weaker than for the MDI-based PUEs. Young's modulus and elongation at break of the TEGDI-based PUEs were quite lower and larger than for the MDI-based PUEs, respectively. This is due to quite weak cohesion force of the hard segment chains in the TEGDI-based PUEs. The degree of swelling of the TEGDI-based PUEs was five times larger than for the MDI-based one. This is associated with the hydrophilic nature of TEGDI and weak cohesion force in the TEGDI-based PUEs. (C) 2009 Elsevier Ltd. All rights reserved.