화학공학소재연구정보센터
Polymer, Vol.51, No.1, 92-99, 2010
Preparation and characterization of hyperbranched polymer grafted mesoporous silica nanoparticles via self-condensing atom transfer radical vinyl polymerization
Hyperbranched poly(2-((bromobutyryl)oxy)ethyl acrylate) (HPBBEA) was grafted onto the exterior surface of mesoporous silica nanoparticles (MSNs) by surface-initiated self-condensing atom transfer radical vinyl polymerization (SCATRVP). The MSNs with ATRP initiator anchored on the exterior surface (MSN-Br) were prepared by the reaction of 5,6-dihydroxyhexyl-functionalized MSNs (MSN-OH) with alpha-bromoisobutyryl bromide. Afterwards, MSN-Br was utilized as initiator in the SCATRVP of inimer BBEA, resulting in core-shell nanoparticles with MSN core and HPBBEA shell (MSN-g-HPBBEA). The molecular weight of HPBBEA increased with the increasing ratio of BBEA to MSN-Br. In view of the high density of bromoester groups on the surface of HPBBEA shell, MSN-HPBBEA was used to initiate the successive polymerization of (2-dimethylamino-ethylmethacrylate) (DMAEMA), forming core-shell nanoparticles MSN-g-HPBBEA-g-PDMAEMA. The resultant products were characterized by FT-IR, NMR, HRTEM and thermogravimetric analysis (TGA), etc. The pH-responsive property of MSN-g-HPBBEA-g-PDMAEMA was characterized by measuring the hydrodynamics radius at different pH values, and this core-shell nanostructure may have potential applications in biomedicine and biotechnology. (C) 2009 Elsevier Ltd. All rights reserved.