Korean Journal of Chemical Engineering, Vol.27, No.4, 1042-1048, July, 2010
Cellular engineering for the high-level production of recombinant proteins in mammalian cell systems
E-mail:
The market for protein-drugs has steadily increased due their increased use as alternatives to traditional small molecule drugs. While some therapeutic proteins have been produced in microbial systems, mammalian cell systems such as Chinese hamster ovary (CHO) cells are widely used as the host cell system. To increase the efficiency of producing therapeutic proteins, many researchers have attempted to solve the critical problems that occur in mammalian cell systems. As a result, several serum-free media and advanced culture methods have been developed, and protein productivity has increased considerably through the development of efficient selection methods. However, the prevalence of apoptosis during mammalian cell culture still remains a significant problem. Based on the understanding of apoptotic mechanisms and related proteins, anti-apoptotic engineering has steadily progressed. In this study, we review the strategies that have been developed for high-level production of recombinant proteins in the CHO cell system via a selection of clones, target-gene amplification, optimization of culture systems and an inhibition of apoptosis through genetic modification.
Keywords:Mammalian Cell;Chinese Hamster Ovary Cell;Therapeutic Proteins;Apoptosis;Recombinant Proteins;Productivity
- Walsh G, Nat. Biotechnol., 21, 865 (2003)
- Wurm FM, Nat. Biotechnol., 22, 1393 (2004)
- Robinson DK, Memmert KW, Biotechnol. Bioeng., 38, 972 (1991)
- Kwaks THJ, Otte AP, Trends Biotechnol., 24, 137 (2006)
- Wilson TJ, Kola I, Methods Mol. Biol., 158, 83 (2001)
- Urlaub G, Chasin LA, Proc. Natl. Acad. Sci. USA., 77, 4216 (1980)
- Urlaub G, Kas E, Carothers AM, Chasin LA, Cell., 33, 405 (1983)
- Pallavicini MG, DeTeresa PS, Rosette C, Gray JW, Wurm FM, Mol. Cell. Biol., 10, 401 (1990)
- Gandor C, Leist C, Fiechter A, Asselbergs FAM, Febs Lett., 377, 290 (1995)
- Wirth M, Bode J, Zettlmeissl G, Hauser H, Gene., 73, 419 (1988)
- Browne SM, Al-Rubeai M, Trends Biotechnol., 25, 425 (2007)
- Sinacore MS, Drapeau D, Adamson SR, Mol. Biotechnol., 15, 249 (2000)
- De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm FM, Biochem. Eng. J., 17, 217 (2004)
- Walker NI, Harmon BV, Gobe GC, Kerr JF, Methods Achiev. Exp. Pathol., 13, 18 (1988)
- Wyllie AH, Morris RG, Smith AL, Dunlop D, J. Pathol., 142, 66 (1984)
- Susin SA, Zamzami N, Kroemer G, Biochim. Biophys. Acta., 1366, 151 (1998)
- Liu X, Kim CN, Yang J, Jemmerson R, Wang X, Cell., 86, 147 (1996)
- Ashkenazi A, Nat. Rev. Cancer., 2, 420 (2002)
- Oyadomari S, Araki E, Mori M, Apoptosis., 7, 335 (2002)
- Adam JM, Cory S, Curr. Opin. Cell Biol., 14, 715 (2002)
- Subramanian T, Chinnadurai G, J. Cell. Biochem., 89, 1102 (2003)
- Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM, Nature, 379(6565), 554 (1996)
- Mastrangelo AJ, Betenbaugh MJ, Trends Biotechnol., 16, 88 (1998)
- Arden N, Betenbaugh MJ, Trends Biotechnol., 22, 174 (2004)
- Sanfeliu A, Stephanopoulos G, Biotechnol. Bioeng., 64(1), 46 (1999)
- Zanghi JA, Renner WA, Bailey JE, Fussenegger M, Biotechnol. Prog., 16(3), 319 (2000)
- Balcarcel RR, Stephanopoulos G, Biotechnol. Bioeng., 76(1), 1 (2001)
- Tinto A, Gabernet C, Vives J, Prats E, Cairo JJ, Cornudella L, Godia F, J. Biotechnol., 95, 205 (2002)
- Sauerwald TM, Oyler GA, Betenbaugh MJ, Biotechnol. Bioeng., 81(3), 329 (2003)
- McKenna SL, Cotter TG, Biotechnol. Bioeng., 67(2), 165 (2000)
- Vives J, Juanola S, Cairo JJ, Godia F, Metab. Eng., 5, 124 (2003)
- Vives J, Juanola S, Cairo JJ, Prats E, Cornudella L, Godia F, Biotechnol. Prog., 19(1), 84 (2003)
- Mastrangelo AJ, Hardwick JM, Bex F, Betenbaugh MJ, Biotechnol. Bioeng., 67(5), 544 (2000)
- Sung YH, Lee GM, Biotechnol. Prog., 21(1), 50 (2005)
- Figueroa B, Sauerwald TM, Oyler GA, Hardwick JM, Betenbaugh MJ, Metab. Eng., 5, 230 (2003)
- Lasunskaia EB, Fridlianskaia II, Darieva ZA, da Silva MSR, Kanashiro MM, Margulis BA, Biotechnol. Bioeng., 81(4), 496 (2003)
- Hwang SO, Lee GM, J. Biotechnol., 139, 89 (2009)
- Kim NS, Lee GM, Biotechnol. Bioeng., 78(2), 217 (2002)
- Sung YH, Lee JS, Park SH, Koo J, Lee GM, Metab. Eng., 9, 452 (2007)
- Rhee WJ, Kim EJ, Park TH, Biotechnol. Prog., 15(6), 1028 (1999)
- Rhee WJ, Park TH, Biochem. Biophys. Res. Commun., 271(1), 186 (2000)
- Rhee WJ, Kim EJ, Park TH, Biochem. Biophys. Res. Commun., 295(4), 779 (2002)
- Choi SS, Rhee WJ, Park TH, Biotechnol. Prog., 18(4), 874 (2002)
- Kim EJ, Rhee WJ, Park TH, Biochem. Biophys. Res. Commun., 285(2), 224 (2001)
- Kim EJ, Park HJ, Park TH, Biochem. Biophys. Res. Commun., 308(3), 523 (2003)
- Park HJ, Kim EJ, Koo TY, Park TH, Enzyme Microb. Technol., 33(4), 466 (2003)
- Kim EJ, Rhee WJ, Park TH, Biotechnol. Prog., 20(1), 324 (2004)
- Rhee WJ, Lee EH, Park TH, Biotechnol. Bioprocess Eng., 14, 645 (2009)
- Kim EJ, Park TH, Biotechnol. Bioprocess Eng., 8, 76 (2003)
- Rhee WJ, Lee EH, Park JH, Lee JE, Park TH, Biotechnol. Prog., 23(6), 1441 (2007)
- Choi SS, Rhee WJ, Park TH, Biotechnol. Bioeng., 91(7), 793 (2005)
- Choi SS, Rhee WJ, Kim EJ, Park TH, Biotechnol. Bioeng., 95(3), 459 (2006)
- Park JG, Choi SS, Park TH, Process Biochem., 42, 8 (2007)
- Koo TY, Park JH, Park HH, Park TH, Process Biochem., 44, 146 (2009)
- Wang Z, Park JH, Park HH, Tan W, Park TH, Process Biochem., in press, doi:10.1016/j.procbio.2010.03.029 (2010)