화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.4, 469-474, August, 2010
자연 건조된 굴참나무와 느티나무 목재의 연소성(II)
Combustion Properties of the Quercus variabilis and Zelkova serrata Dried at Room Temperature (II)
E-mail:
초록
목재는 연소성이 높은 본질적인 결함을 가지고 있다. 본 연구의 목적은 자연 건조된 굴참나무와 느티나무의 연소성질을 시험하였다. 열방출율과 CO/CO2 발생과 연기차폐와 같은 연기지수를 콘칼로리미터 (ISO 5660-1)를 이용하여 측정하였다. 50 kW/m2의 외부 열유속하에서 굴참나무의 총 방출열량, THR (140.2 MJ/m2)은 느티나무의 THR (85.7 MJ/m2)과 비교하여 높게 나타났다. 그리고 굴참나무의 총 연기발생량, TSP 3.50 m2는 느티나무의 TSP 0.65 m2에 비하여 높게 나타났다. 이들 결과는 시험목의 체적밀도에 의존함을 보여준다. CO/CO2 발생비는 굴참나무와 느티나무가 각각 0.053, 0.043을 나타내었다. 또한 느티나무가 굴참나무에 비해 숯생성으로 인한 증대된 연소 억제성을 보여주었다.
Wood has an essential drawback such as high combustion ability. The purpose of this paper is to examine the combustion properties of the quercus variabilis and zelkova serrata dried at room temperature. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO/CO2 production and smoke obscuration. The total heat release (THR), 140.2 MJ/m2 of the quercus variabilis under an external 50 kW/m2 was high in comparison with THR 85.7 MJ/m2 for the zelkova serrata. Furthermore, the quercus variabilis has high total smoke production (TSP), 3.50 m2 compared with TSP 0.65 m2 of zelkova serrata. Thease results depend on the bulk density of tested wood species. In addition, the CO/CO2 production ratio of zelkova serrata and quercus variabilis was measured as 0.053, 0.043, respectively. Also, zelkova serrata showed an increase of fire-resistance attributed to char formation compared with that of quercus variabilis.
  1. Boonmee N, Quintiere JG, Twenty-ninth Symposium (international) on combustion, The Combustion Institute, 29, 289 (2002)
  2. Hirschler MM, Advances in Combustion Toxicology, 2, 229 (1990)
  3. Shafizadeh F, DeGroot WF, Combustion characteristics of cellulosic fuels, edds Shafizadeh F, Sarkenen KV, Tillman DA, Thermal Uses and Properties of Carbohydrates and Lignins, Academic Press, New York, U.S.A. (1976)
  4. Tillan DA, Wood as an energy resource, Academic Press, New York, U.S.A. (1978)
  5. Spearpoint MJ, Predicting the ignition and burning rate of wood in the cone calorimeter using an intergral model, 30, NIST GCR 99-775, U.S.A. (1999)
  6. Babrauskas V, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008)
  7. Tran HC, White RH, Fire and Materials, 16, 197 (1992)
  8. Carle JB, Brown JL, Wood as a source of solid fuel, ed. Watt GS, a review, New Zealand Forest Service, Auckland. NZ. (1976)
  9. Cheremisinoff NP, Wood for energy production, Ann Arbor Science Publishers, Ann Arbor, Mich., U.S.A. (1980)
  10. Pearce FM, Khanna YP, Raucher D, Thermal Characterization of Polymeric Materials, Chap. 8, Academic Press, New York, U.S.A. (1981)
  11. Babrauskas V, New Technology to reduce Fire Losses and Costs, eds Grayson SJ, Smith DA, Elsevier Appied Science Publisher, London, UK. (1986)
  12. Hirschler M, Thermal decomposition and chemical composition, 239, American Chemical Society Symposium Series 797 (2001)
  13. Boonme N, Quintiere JG, Thirtieth Symposioum (International) on combustion, The Combustion Institute, l), 30, 2303 (2005)
  14. Mikkola E, Fire Safety Science, Proceedings of the Third International Symposium, 547, Elsevier, Applied Science, London (1991)
  15. Quintiere JG, A Semi-quantitative Model for the Burning Rate of Solid Materials, NISTIR 4840, National Institute of Standards and Technology, Gaithersburg, M.D., U.S.A. (1992)
  16. Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
  17. Park HJ, Kim H, J. of Korean Institute of Fire Sci. & Eng., 18, 86 (2004)
  18. Chung YJ, Journal of Korean Forest Society, 98, 319 (2009)
  19. ISO 5660-1, Genever (2002)
  20. EN 13823 (2002)
  21. Simpso WT, Wood Handbook-Wood as an Engineering Material, Chap.12, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsine, U.S.A. (1987)
  22. Chung YJ, Kwon IK, Journal of Korean Forest Society, 99, 96 (2010)
  23. Babrauskas V, doi: 1002/fam. 810080206, Fire and Materials, 8, 81 (1984)
  24. Babrauskas V, Grayson SJ, Heat release in Fires, 644, E & FN Spon (Chapman and Hall), London, UK. (1992)
  25. Quintire JG, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998)
  26. Delichatsios M, Paroz B, Bhargava A, Fire Safety Journal, 38, 219 (2003)
  27. Hull TR, Paul KT, Fire Safety Journal, 42, 340 (2007)