화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.22, No.2, 119-127, June, 2010
Rheological properties of fish skin collagen solution : Effects of temperature and concentration
E-mail:
To use collagen from freshwater fish skin as an alternative source of mammalian collagens for biomedical applications, we tested the rheological and structural properties of collagen from the skin of largefin longbarbel catfish (Mystus macropterus) by dynamic viscoelastic measurements. Fish skin collagen solution (FSCS) exhibited a shear-thinning flow behavior. The complex viscosity (η*), loss tangent (tan δ) and relaxation time of 1.5% FSCS decreased with the increase of temperature. Also, tan δ decreased while the relaxation time increased with the increase of FSCS concentration. FSCS had considerably lower storage modulus (G'), loss modulus (G"), η* values and relaxation time and a higher tan δ value than those of bovine skin collagen solution (BSCS). However, FSCS behaved without regularity above 27.5℃, which was in agreement with the result that the dynamic denaturation temperature of this collagen was approximately 29.5℃. These results indicated that temperature and concentration could be tools suitable for adjusting FSCS viscosity. The Arrhenius-type time-temperature superposition (TTS) was applied. In addition, the activation energy of 149.6 KJ mol^(-1) for 1.5% FSCS was calculated according to the Arrhenius equation, indicating a weaker entanglement effect amongst fish skin collagen molecules than that amongst bovine skin collagen molecules, which was in agreement with the results from AFM measurement.
  1. Al-Ruqaie IM, Kasapis S, Abeysekera R, Carbohydr. Polym., 34, 309 (1997)
  2. Amis EJ, Carriere CJ, Ferry JD, Veis A, Int. J. Biol. Macromol., 7, 130 (1985)
  3. Ferry JD, Viscoelastic Properties of Polymers, Wiley, New York, p. 369. (1989)
  4. Friess W, Eur. J. Pharm. Biopharm., 45, 113 (1998)
  5. Friess W, Schlapp M, Eur. J. Pharm. Biopharm., 51, 259 (2001)
  6. Ford CN, Bless DM, Loftus JM, Ann Otol Rhinol Laryngol., 101, 237 (1992)
  7. Forgacs G, Newman SA, Hinner B, Maier CW, Sackmann E, Biophys. J., 84, 1272 (2003)
  8. Haug IJ, Draget KI, Smidsrød O, Food Hydrocolloid., 18, 203 (2004)
  9. Heymans N, Signal Process., 83, 2345 (2003)
  10. Hickman D, Sims TJ, Miles CA, Bailey AJ, de Mari M, Koopmans M, J. Biotech., 79, 245 (2000)
  11. Hsieh TT, Tiu C, Simon GP, Wu RY, J. Non-Newton. Fluid Mech., 86(1-2), 15 (1999)
  12. Jenkins CL, Raines RT, Nat. Prod. Rep., 19, 49 (2002)
  13. Joly-Duhamel C, Hellio D, Ajdari A, Djabourov M, Langmuir, 18(19), 7158 (2002)
  14. Kasapis S, Mitchell JR, Int. J. Biol. Macromol., 29, 315 (2001)
  15. Korhonen M, Hellen L, Hirvonen J, Yliruusi J, Int. J. Pharm., 221, 187 (2001)
  16. Laemmli UK, Nature., 277, 680 (1970)
  17. Lai GL, Li Y, Li GY, Int. J. Biol. Macromol., 42, 285 (2008)
  18. Lai G, Du Z, Li G, Korea-Aust. Rheol. J., 19(2), 81 (2007)
  19. Monkos K, Int. J. Biol. Macromol., 18, 61 (1996)
  20. Pietrucha K, Int. J. Biol. Macromol., 36, 299 (2005)
  21. Ramachandran GN, Int. J. Peptide Protein Res., 31, 1 (1988)
  22. Ramachandran GN, Bansal M, Bhatnagar RS, Biochim. Biophys. Acta., 322, 166 (1973)
  23. Raspanti M, Viola M, Sonaggere M, Tira ME, Tenni R, Biomacromolecules, 8(7), 2087 (2007)
  24. Sai KP, Babu M, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 128, 81 (2001)
  25. Toung JS, Ogle RC, Morgan RF, Lindsey WH, Arch. Otolaryngol. Head Neck Surg., 125, 451 (1999)
  26. Vaidyanathan TK, Vaidyanathan J, Cherian Z, Dent. Mater., 19, 46 (2003)
  27. Woessner Jr. JF, Arch. Biochem. Biophys., 93, 440 (1961)
  28. Yang YL, Kaufman LJ, Biophys. J., 96, 1566 (2009)
  29. Yoshimura K, Terashima M, Hozan D, Shirai K, J. Agric. Food Chem., 48, 685 (2000)
  30. Yoshimura K, Chonan Y, Shirai K, J. Anim. Sci., 70, 227 (1999)
  31. Zhang M, Liu WT, Li GY, Food Chem., 115, 826 (2009)
  32. Zhang ZK, Li GY, Shi B, J. Soc. Leather Technol. Chem., 90, 23 (2006)