Polymer Engineering and Science, Vol.48, No.5, 976-986, 2008
Gas-assisted injection molded polypropylene: The skin-core structure
In this article, gas penetration-induced skin-core structure of isotactic polypropylene(iPP), which is molded by gas-assisted injection molding at different gas pressures, was investigated. For comparison, the counterpart was also molded by conventional injection molding (CIM) using the same processing parameters but without gas penetration. They were characterized via PLM, DSC, and SEM. And the crystal morphology at different gas pressures was principally concerned. For the GAIM parts, highly oriented structure is formed in the skin zone, and much less oriented structure in the inner zone (near the gas channel surface). Furthermore, it is suggested that the naked shish structure can be developed in the skin zone of GAIM part, which is molded at higher gas pressures, and shish-kebab structure is mainly formed in the skin zone of that, which is molded at lower gas pressure. However, for the CIM part, from the skin to the core zone, the dominant morphological feature is spherulite. In a word, the presence of gas penetration notably enhances the oriented structure formation and gives rise to the skincore structure.