화학공학소재연구정보센터
Polymer Engineering and Science, Vol.49, No.10, 2054-2061, 2009
Dispersion of Cellulose Crystallites by Nonionic Surfactants in a Hydrophobic Polymer Matrix
Cellulose nanoparticies obtained by acid hydrolysis of cellulose paper were used to reinforce polystyrene composite films. The nonionic surfactant sorbitan monostearate was utilized to improve the dispersion properties of the hydrophilic cellulose in hydrophobic matrix and to prevent the formation of aggregates. Turbidity tests were used to measure dispersion stability of the cellulose crystallites in the hydrophobic solvent used in the composite manufacture. A correlation was found between the dispersion stability in solvent and the formation of aggregates in the polymeric composites. Nanocomposite films were processed using a casting/evaporation technique. Thermal and mechanical properties of processed composites were studied by differential scanning calorimetry (DSC) and dynamical mechanical analyses (DMA), respectively. The results showed that the optimum addition of surfactant produced better dispersion of the cellulose particles in the polystyrene matrix and improved the mechanical properties of the resulting composite due to an enhanced compatibility. POLYM. ENG. SCI., 49:2054-2061, 2009. (C) 2009 Society of Plastics Engineers