Protein Expression and Purification, Vol.67, No.1, 35-40, 2009
Expression of Epstein-Barr virus EBNA1 protein in Escherichia coli: Purification under nondenaturing conditions and use in DNA-binding studies
Epstein-Barr virus nuclear antigen 1 (EBNA1) is a viral protein required for stable replication and segregation of DNA episomes containing the Epstein-Barr virus (EBV) origin of replication, OriP. Overproduction of EBNA1 protein in Escherichia coli has previously been shown to be difficult due to the large number of codons in EBNA1 gene that are infrequently used in E. coli. Here we changed the 26 rare codons that are found among the first 78 codons of EBNA1 gene. and replaced them with codons that encode the same amino-acids but are abundant in E. coli. This led to a significant improvement of EBNA1 expression in a standard E. coli strain. Partial EBNA1 polypeptides of 11.5-16 kDa extending from the N-terminus to the second arginine and glycine-rich region were extremely abundant in the extract, however, resulting in a second limitation of the level of EBNA1 expression. EBNA1 was expressed as a fusion with a C-terminal six-histidine tag in order to get rid of the short polypeptides by Ni-NTA affinity purification, and salt conditions were used that allowed us to extract and purify EBNA1 without resorting to protein denaturing reagents. The purified protein was used in DNA-binding experiments with DNA fragments containing specific EBNA1 sites. The E. coli-expressed protein formed specific DNA-protein complexes that could be analyzed in polyacrylamide gels without showing the aggregation, or linking, phenomenon that is usually observed with EBNA1 expressed in eukaryotic cells. EBNA1 protein expressed in E. coli should therefore prove useful to further study the biochemical properties of this crucial Epstein-Barr virus protein, (C) 2009 Elsevier Inc. All rights reserved.