화학공학소재연구정보센터
Rheologica Acta, Vol.49, No.6, 597-606, 2010
Dynamic simulation of non-spherical particulate suspensions
Particle-level simulation has been employed to investigate rheology and microstructure of non-spherical particulate suspensions in a simple shear flow. Non-spherical particles in Newtonian fluids are modeled as three-dimensional clusters of neutrally buoyant, non-Brownian spheres linked together by Hookean-type constraint force. Rotne-Prager correction to velocity disturbance has been employed to account for far-field hydrodynamic interactions. An isolated rod-like particle in simple shear flow exhibits a periodic orientation distribution, commonly referred to as Jeffery orbit. Lubrication-like repulsive potential between clusters have been included in simulation of rod-like suspensions at various aspect ratios over dilute to semi-dilute volume fractions. Shear viscosity evaluated by orientation distribution qualitatively agrees with one obtained by direct computation of shear stress.