화학공학소재연구정보센터
Separation Science and Technology, Vol.45, No.1, 94-104, 2010
Removal of Crystal Violet Dye from Aqueous Solution Using Calcined and Uncalcined Mixed Clay Adsorbents
In this work, calcined and uncalcined mixed clays containing kaolin, ball clay, feldspar, pyrophyllite, and quartz are examined as a potential adsorbent for the removal of crystal violet dye from aqueous solution. These clays are characterized by nitrogen adsorption/desorption isotherms, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and thermo gravimetric analysis (TGA). The kinetics and thermodynamic parameters as well as the effects of the pH, the temperature, and the adsorbent dosage have also been investigated. The experimental results indicate that the Langmuir model expresses the adsorption isotherm better than the Freundlich model. The obtained result showed a tremendous increase in the crystal violet adsorption capacity (1.9x10-3mol g-1) after calcination, which is one order greater than that of the uncalcined mixed clay. The mechanism of the adsorption process is elucidated on the basis of experimental data. The percentage removal of crystal violet dye increases with increasing the pH, the temperature, and the adsorbent dosage. The investigation of kinetic studies indicates that the adsorption of crystal violet on calcined and uncalcined mixed clays could be described by the pseudo-second-order model. The negative G0 values obtained from the thermodynamic investigation confirm that the adsorption is spontaneous in nature. The adsorption results suggest that the calcined and uncalcined mixed clays can also be used as low cost alternatives to the expensive activated carbon for the removal of dyes from aqueous solution.