화학공학소재연구정보센터
Solid State Ionics, Vol.180, No.11-13, 835-838, 2009
Electrical conductivity of yttria-stabilized zirconia with cobalt addition
Yttria-stabilized zirconia is the most developed solid electrolyte for use in high-temperature solid oxide fuel cells. Commercial yttria-stabilized zirconia powders reach high densification at temperatures higher than that of the usual anode materials. Reduction of the sintering temperature of the solid electrolyte could allow for co-firing of both ceramic components, thereby reducing production costs. The main purpose of this work was to study the effect of small cobalt additions on densification and on electrical conductivity of 8 mol% yttria-stabilized zirconia. Linear shrinkage results show that the onset temperature for shrinkage decreases with increasing cobalt content. Impedance spectroscopy measurements reveal that the electrical conductivity depends on the sintering profile. For specimens sintered at 1400 degrees C for CA It the electrical conductivity of grains and grain boundaries are almost unchanged with that of 8YSZ. In contrast, for specimens sintered at the same temperature but for 0.5 h of soaking time, the electrical conductivity is higher in 0.025 mol% samples and is lower for 1 mol% Co doped 8YSZ. Degradation of the microstructure by increased porosity was obtained for high additive contents. (C) 2009 Elsevier B.V. All rights reserved.