Polymer(Korea), Vol.34, No.5, 424-429, September, 2010
지방족 가교 폴리에스테르-실리카 복합재료의 제조 및 열적특성
Preparation and Thermal Properties of Aliphatic Network Polyester-Silica Composites
E-mail:
초록
졸-젤법을 이용한 실리카를 지방족 폴리에스테르 주사슬에 가교구조로 도입한 하이브리드 복합재료를 합성하여 열전소자의 버퍼코트층으로의 적용가능성을 검토하였다. 고분자 기지로 사용된 폴리에스테르는 240 ℃의 고온에서 열처리 시간에 따라 30∼90 ℃ 정도 열분해개시 온도가 증가하였고, 폴리에스테르-실리카 복합재료는 실리카의 첨가비율에 따라 30∼50 ℃ 정도 열분해 개시온도가 증가하였다. 폴리에스테르-실리카 복합재료는 실리카가 Knoevenagel 축합반응을 방해하는 요소로 작용하여 폴리에스테르에 비해 열처리후에도 변색이 일어나지 않았고, 광학특성 변화가 작았다. 이들 복합재료의 열전도도는 실리카의 첨가량에 따라 선형적으로 증대되었다.
The hybrid composites of aliphatic polyester-silica were prepared via a sol-gel reaction and
their potential application using as a buffer coating layer in the thermoelectric device were investigated. When aliphatic polyesters were thermally treated at a high temperature of 240 ℃, the polymer showed an increases in thermal degradation temperature by 30∼90 ℃ according to the thermal treatment time. The polyester-silica composites showed an increases in thermal degradation temperature by 30∼50 ℃ according to the content of the added silica. Polyester-silica composite showed neither discoloration nor change in optical properties because Knoevenagel condensation reaction was hindered by silica structure. The thermal conductivity of the composites increased linearly according to the content of added silica.
- Saujanya C, Radhakrishnan S, Polymer, 42(16), 6723 (2001)
- Lee YT, Polym. Sci. Technol., 4(6), 444 (1993)
- Zou H, Wu SS, Shen J, Chem. Rev., 108(9), 3893 (2008)
- Sakka S, Kamiya K, J. Non-Cryst. Solids, 42, 403 (1980)
- Tsuji H, Echizen Y, Nishimura Y, Polym. Degrad. Stabil., 91, 1128 (2006)
- Ikada Y, Tsuji H, Macromol. Rapid Commun., 21(3), 117 (2000)
- Lee SH, Han YK, Kim YH, Kim SH, J. Polym. Sci. Part A : Polym. Chem., 40, 567 (1998)
- Kang TG, Han YK, Polym.(Korea), 29(3), 314 (2005)
- Kim J, Choi HJ, Lee DC, Yoon JS, Chin IJ, Lee KH, Polym.(Korea), 24(3), 358 (2000)
- Kim DK, Shin YS, Im SS, Yoo YT, Huh JR, Polym.(Korea), 20(3), 431 (1996)
- Kwak G, Fujiki M, Macromolecules, 37(6), 2021 (2004)
- Li FX, Liu ZF, Liu XP, Yang XY, Chen SN, An YL, Zuo J, He BL, Macromolecules, 38(1), 69 (2005)
- Jeong S, Kwak G, Jung IT, Lee DH, Roh HJ, Yoon KB, Polymer(Korea), 32, 56 (2009)
- Seebeck TJ, “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz”, Abhandlungen der Preussischen Akad, der Wissenshaften zu Berlin, p.265 (1822)
- Nolas GS, Sharp J, Goldsmid HJ, Thermoelectrics: Basic Principles and New Materials Developments, Springer Series in Materials Science, Springer-Verlag Berlin, Germany, p 1 (2001)
- Loffe AF, Semiconductor Thermoelements and Thermoelectric Cooling, Inforsearch Ltd, London (1957)
- Yoon KB, Jeong S, Kwak G, Macromol. Rapid Commun., 28(11), 1231 (2007)
- Arnett EM, Maroldo S, Schilling SL, Harrelson JA, J. Am. Chem. Soc., 106, 6759 (1984)
- Jones G, Organic Reactions(New York), 15, 204 (1967)
- Tietze LF, Beifuss U, in Comprehensive Organic Synthesis, Trost BM, Fleming I, Editors, Pergamon Press, New York, Vol. 2, p 341 (1991)
- Laue T, Plagens A, Named Organic Reactions, 2nd ed., John Wiley & Sons Publishers, England, p 176 (2005)
- Xu Y, Chung DDL, Cathleen M, Compos. Part A, 32, 1749 (2001)
- Dashora P, Gupta G, Polymer, 37(2), 231 (1996)
- Tritt TM, Subramanian MA, MRS Bulletin, 31, 188 (2006)