화학공학소재연구정보센터
Advanced Materials, Vol.22, No.3, 314-322, 2010
Defect-Mediated Polarization Switching in Ferroelectrics and Related Materials: From Mesoscopic Mechanisms to Atomistic Control
The plethora of lattice and electronic behaviors in ferroelectric and multiferroic materials and heterostructures opens vistas into novel physical phenomena including magnetoelectric coupling and ferroelectric tunneling. The development of new classes of electronic, energy-storage, and information-technology devices depends critically on understanding and controlling field-induced polarization switching. Polarization reversal is controlled by defects that determine activation energy, critical switching bias, and the selection between thermodynamically equivalent polarization states in multiaxial ferroelectrics. Understanding and controlling defect functionality in ferroelectric materials is as critical to the future of oxide electronics and solid-state electrochemistry as defects in semiconductors are for semiconductor electronics. Here, recent advances in understanding the defect-mediated switching mechanisms, enabled by recent advances in electron and scanning probe microscopy, are discussed. The synergy between local probes and structural methods offers a pathway to decipher deterministic polarization switching mechanisms on the level of a single atomically defined defect.